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The DR Problem 

• Diabetic retinopathy is a vision threatening social problem. 

• WHO: 221 million people affected by 2010. 

 

• Stages of DR:- 
– Non-Proliferative DR ( includes MA, cotton wool spots etc.. ). 

– Proliferative DR (includes NV, mature NPDR symptoms,  Hemorrhages). 

 

• Early detection and treatment of DR is crucial.   



The DR Problem 

Source: Moorfields Photographic Archive 

Yellow arrow: Exudates 
 
Red arrow: Microaneurysms (MA) 
 
White arrow: Cotton wool spot 
 
Green arrow: Hemorrhage 



The DR Problem 

• To circumvent ophthalmological fatigue, computer-aided 
diagnosis plays a principal role.  

 

• Idea:-  
– Retrieve “clinically relevant” images from previously diagnosed archives. 

– Clinically relevant = Similar lesions + similar severity levels (will be 
explained in detail later). 

– Helps in knowledge sharing and reutilization among experts. 
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Literature 

• CBIR systems for other medical applications:- 
–  Neural image database [Chu94]. 

– CT scan images [Kelly 95]. 

– High-resolution computer tomography lung images [Shyu99]. 

• STARE project: The first attempt of performing CBIR on retinal 
images [Gupta96]. 

• Recent CBIR system for automated diagnosis of DR: [Chaum08]. 

 



Literature 

• Recent work: 
– [Agurto12] Detection of Neovascularization in the Optic Disc. 

– [Quellec12] A MIL framework for diabetic retinopathy screening.  

– [Garg12] Telemedicine for Improving DR Evaluation. 

 

• These groups have been working actively in DR related CAD 
research.  

 

• Yet, there is NO solution available, which is unanimously 
accepted by the ophthalmological community. 
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Feature Space 

• Auto color correlogram (Auto CC) is the feature used 
[Venkatesan12]. 

• Tabular representation of indexed color pairs. 

• Models the distribution of colors in an image.  

 

• Feature dimensionality:- 256. 

 

• Combined with statistics of steerable Gaussian filter response 
(SGF) and fast radial symmetric transform (FRST).  

 
 



Feature Space 

• SGF is widely used to detect presence of contours, lines and 
other geometrical structures [Freeman91]. 

 
 

(a) Signal (b) Filter response at 225° 



Feature Space 

• FRST – interest point detector [Loy03]. 
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MIL to the Rescue 

 

 

 
 

• AutoCC and other features are 
essentially global. 

• Local descriptors do not work: too 
many landmarks. 

• In a DR problem, global features will 
have low discriminative power 
because most of the image looks 
normal.  

• Retrieval must be performed only 
based on the nature of lesions 
(minority). 

• Possible option: 

– Multiple instance retrieval ! 

   Localized lesion 

  Let’s see how  
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Multiple instance retrieval 



MIL to the Rescue 

 

 

 
 



MIL to the Rescue 

• Multiple instance learning algorithms: 
 

 Learning axis parallel concepts [Dietterich97]. 

 Diverse density [Maron98]. 

 EMDD [Zhang01]. 

 Citation-KNN [Wang02]. 

 Multiple instance SVM [Andrews02]. 

The only retrieval 

algorithm 



MIL to the Rescue 

• Citation-KNN: 
– Similarity metric is the minimal Haussdorff distance between two bags. 

 
𝑑 𝐴, 𝐵 = min

𝑎∈𝐴
min
𝑏∈𝐵

∥ 𝑎 − 𝑏 ∥ 

‾ Minimal Haussdorff distance gives the minimum of minimum distances between 
all instances in two bags. 

 

• Why not Citation-kNN?                                       

 

 

• DR has an unique feature space 

• Citation-kNN – designed for 

uniformly distributed negative 

samples 

• DR has localized positive and 

negative samples 

 

 
A special MIL retrieval algorithm!!!  
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Rank-KNN 
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Rank-KNN 
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image in the database) 

• Its similarity rank is 3. 

• This is only an 

instance level rank! 
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Similarity Rank 
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Rank-KNN 

ASR (1) = 2.25           
ASR (2) = 2.75 
ASR (3) = 2                
ASR (4) = 3 
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Rank-KNN 

ASR (1) = 2.25           
ASR (2) = 2.75 
ASR (3) = 2                
ASR (4) = 3 

m-Rank (1) = 2       
m-Rank (2) = 3 
m-Rank (3) = 1       
m-Rank (4) = 4 

Sorting ASR:- Its indices gives m-Rank. 

 



Rank-KNN 

• Why Rank-KNN works? 

̶ Considers instance level similarity. 

̶ Transforms it to bag level rank. 

 

̶ Even if one instance is dissimilar, ASR will be high. 

̶ ASR will be low as long as images are clinically relevant. 

 

Thus clinically relevant multiple instance retrieval can be 

performed without involving labels !  
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Experiments 

• The dataset consists of 425 images. 

̶ 160 normal images. 

̶ 181 PNDR images. 

̶ 84 PDR images. 

 

• All 425 images in the database were individually queried and 

the top (k=) 5 images retrieved using the approach. 

 

• The evaluation metrics used:- 

̶ ≥k-hit rate. 

̶ success at kth rank. 

̶ mean accuracy at kth  rank. 
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Results 
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Reproducibility analysis 
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Conclusions 

• Presented  a novel approach using MIL for retrieval of 

clinically-relevant DR images. 

 

• Developed a set of features and a MIL retrieval algorithm 

customized for DR images. 

 

• Results are consistent and better than prior-art CBIR 

methods. 
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