

Perception-inspired spatio-temporal video deinterlacing

^{1,3}Ragav Venkatesan, ²Christine Zwart, ^{2,3}David Frakes, ¹Baoxin Li

¹School of Computing Informatics and Decision Systems Engineering, Arizona State University, Tempe, AZ, USA ²School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA ³School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ, USA

OUTLINE

Introduction

Literature review

Proposed deinterlacing system

Results

Conclusions

OUTLINE

Introduction

Literature review

Proposed deinterlacing system

Results

Conclusions

Interlaced Videos:- Given frame of 'N' rows, only 'N/2' alternate rows are present in one field.

Remaining rows are present in the next field

Deinterlacing :-

- Convert Interlaced Videos to Deinterlaced
 Videos
- Convert Fields to Frames.

Deinterlacing :-

$$F_0(\vec{x}, n) = \begin{cases} F(\vec{x}, n), \ y \ mod2 = n \ mod2 \\ F_i(\vec{x}, n), & otherwise \end{cases}$$

- Static region of video → Temporal deinterlacing
- High motion in the video → Spatial deinterlacing
- •Sports is broadcast over 1080i rather than the usual 720p or 1080p. This is followed by ESPN/Star, Sky, BBC sport.

OUTLINE

Introduction Literature review

Proposed deinterlacing system

Results

Conclusions

Linear Deinterlacers

- Spatial Deinterlacers
- Temporal Deinterlacers
- Spatio-Temporal Deinterlacers

Non-Linear Deinterlacers

- Inter-Frame Deinterlacers
- Intra-Frame Deinterlacers
- Adaptive Deinterlacers

Linear Deinterlacers:-

$$\widehat{F_n}(i,j) = \begin{cases} F_n(i,j), & (j \mod 2 = n \mod 2) \\ \sum_m \sum_k F_{n+m}(i,j+k) h_m(k), (otherwise) \end{cases}$$

Line Averaging (LA):-

Spatial Linear Deinterlacers:-

- •All pass on the temporal.
- •Even after low pass, aliasing components are preserved.

Temporal Linear Deinterlacers:-

- •All pass on the vertical.
- •This is the best solution for a static image as all the vertical frequencies are preserved

Temporal Linear Deinterlacers:-

Vertical Temporal Filter (VTF) [Wes98]:-

$$\widehat{F_n}(i,j) = \begin{cases} F_n(i,j), & (j \mod 2 = n \mod 2) \\ \sum_m \sum_k F_{n+m}(i,j+k) h_m(k), (otherwise) \end{cases}$$

$$h_m(k) = \begin{cases} \frac{1}{2}, \frac{1}{2}, \dots, (k = -1, 1, m = 0) \\ -\frac{1}{16}, \frac{1}{8}, -\frac{1}{16}, (k = -2, 0, 2, m = -1, 1) \end{cases}$$

Non- Linear Deinterlacers:-

- Inter-Frame Deinterlacers
- Intra-Frame Deinterlacers
- Adaptive Deinterlacers

Non- Linear Deinterlacers:-

- Inter-Frame Deinterlacers
 - Edge based Line Averaging
- Intra-Frame Deinterlacers
 - Spatio-Temporal edge based median filtering
- Adaptive Deinterlacers
 - Content adaptive vertical temporal filtering.

Method switching algorithms (MSAs)

Method switching ELA [Hon11]

• Choses between LA, ELA and STELA.

Content adaptive VTF CAVTF [Lee13]

- Adaptively 'learn' the filter weights of VTF based on video content
- Uses Adaptive dynamic range encoding (ADRC)
- Each code gets a different weight
- Latest paper there is on deinterlacing
- Considered to be benchmark for our tests.

OUTLINE

Introduction

Literature review
Proposed deinterlacing system

Results

Conclusions

Region of video that has no motion or a static region.

• This requires a purely temporal deinterlacer.

Region of video that has moderate motion.

• This requires a spatio-temporal deinterlacer

Region of video that has very high motion.

• This requires a purely spatial deinterlacer.

$$\widehat{F}_n(i,j) = \begin{cases} F_n(i,j) , \\ \\ \end{cases}$$

ľ

(j mod2 = n mod2) **a**, **A b**, **B**

Solving for Region A :-

Difference image will give static regions

$$d_n = \|F(n+1) - F(n-1)\|$$

Threshold to 1 bit-depth.

Condition **a**: $d_n(i, j) < t_1$ where t_1 is 1 bit.

$$\widehat{F}_{n}(i,j) = \begin{cases} F_{n}(i,j), & (j \mod 2 = n \mod 2) \\ F_{n-1}(i,j), d_{n}(i,j) < t_{1} \\ & b, B \\ & c, C \end{cases}$$

Solving for Region **B** :- Spectral residue.

 $q^{n} = Ch_{1}^{n} + Ch_{2}^{n}\mu_{1} + Ch_{3}^{n}\mu_{2} + Ch_{4}^{n}\mu_{3}$

$$Q_{i}^{n}[u,v] = \frac{1}{\sqrt{WH}} \sum_{\substack{w=0\\W^{n}=1\\W^{n}=1}}^{W-1} \sum_{\substack{x=0\\H^{n}=1}}^{H-1} e^{\mu_{1}^{2\pi\left(\frac{yv}{W}+\frac{xu}{H}\right)}} q_{1}^{n}(x,y)$$
$$q_{i}^{n}[x,y] = \frac{1}{\sqrt{WH}} \sum_{\substack{w=0\\v=0}}^{W-1} \sum_{\substack{x=0\\H^{n}=1}}^{X} e^{\mu_{1}^{2\pi\left(\frac{yv}{W}+\frac{xu}{H}\right)}} Q_{1}^{n}[u,v]$$

Solving for Region B :-

$Q_p = Q/||Q||$

Phase spectrum of the transform.

Solving for Region B :-

$Q_p = Q/||Q||$

Gaussian smooth the Phase spectrum of the transform.

$$S_n(i,j) = g * q_p$$

2D Control Grid Interpolation :

 $2DI[i, j, k] = I(i + d_1[i, j, k], j + d_2[i, j, k], k + \partial k)$ [Frakes08]

1D control grid interpolation:

 $I(i,j) = I(i + \alpha, j + 1)$

Two uni-directional estimates:-

$$I(i,j) = I(i + 2\alpha, j + 2) I(i, j + 2) = I(i + 2\alpha, j)$$

$$1DI = I(i + \alpha, j + 1) = \frac{1}{2}[I(i, j) + I(i + 2\alpha, j + 2)]$$

OUTLINE

Introduction

Literature review

Proposed deinterlacing system **Results**

Conclusions

Results

■ STELA ■ VTF ■ SRVTF ■ Proposed

Results

VTF SRVTF SDD

Original

VTF

ELA

SRVTF

STELA

Proposed

CAVTF [Lee11]

Proposed

Thank You.

[Gates97] Microsoft, "Broadcast-enabled computer hardware requirements," in *WinHec'97*, 1997.

[Haa98] G. Haan and E. Bellers, "Deinterlacing-an overview," *Proceedings of the IEEE*, vol. 86, pp. 1839-1857, September 1998.

[Wes98] M. Weston, Interpolating lines of video signals, US-patent 4,789,893, December 1988.

[Sal93] J. Salonen and S. Kalli, "Edge adaptive interpolation for scanning rate conversion," *Signal processing for HDTV IV*, pp. 757-764, 1993.

[Kuo96] C. J. Kuo, C. Liao and C. Lin, "Adaptive interpolation technique for scanning rate conversion," IEEE Transactions on circuit systems and video technology, vol. 6, pp. 317-321, 1996.

[Oh00] H. S. Oh, Y. Kim, Y. Y. Jung, A. W. Morales and S. J. Ko, "Spatio-temporal edge-based median filtering for deinterlacing," in International conference on consumer electronics, 2000

[Hon11] S.-M. Hong, S.-J. Park, J. Jang and J. Jeong, "Method switching algorithm for intra-field deinterlacing," in IEEE 15th International symposium on consumer electronics, 2011.

[Lee11] K. Lee and C. Lee, "High quality deinterlacing using content adaptive vertical temporal filtering," IEEE Transactions on consumer electronics, pp. 2469-2474, 2011.

[Lu10] T. Lu, Z. Yuan, Y. Huang, D. Wu and H. Yu, "Video retargetting with nonlinear spatial-temporal saliency fusion," in *International conference on image processing (ICIP)*, 2010.

[Itt98] L. Itti, C. Koch and E. Niebur, "A model of saliency-based visual attention for rapid scene analysis," IEEE Transactions on pattern analysis and machine intelligence, vol. 20, pp. 1254-1259, 1998.

[Frakes08] Frakes, David H., et al. "A new method for registration-based medical image interpolation." *Medical Imaging, IEEE Transactions on* 27.3 (2008): 370-377.

[Hou07] X. Hou and L. Zhang, "Saliency Detection: A Spectral residue appraoch," in *Computer vision and pattern analysis (CVPR)*, 2007.

[San01] S. Sangwine and T. Ell, "Hypercomplex Fourier transforms of color images," *IEEE Transactions on image processing*, pp. 22-35, 2001.

[Zwa12] C. Zwart and D. H. Frakes, "Soft adaptive gradient angle interpolation of grayscale images," in *IEEE International conference on Acoustics, Speech and Signal Processing (ICASSP)*, 2012.

[See07] P. Seeling , F. Fitzek and M. Reisslein, Video traces for network performance evaluation, Springer, 2007.