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Abstract

Multiple-instance learning (MIL) is a unique learning
problem in which training data labels are available only for
collections of objects (called bags) instead of individual ob-
jects (called instances). A plethora of approaches have been
developed to solve this problem in the past years. Popular
methods include the diverse density, MILIS and DD-SVM.
While having been widely used, these methods, particularly
those in computer vision have attempted fairly sophisticated
solutions to solve certain unique and particular configura-
tions of the MIL space.

In this paper, we analyze the MIL feature space using
modified versions of traditional non-parametric techniques
like the Parzen window and k-nearest-neighbour, and de-
velop a learning approach employing distances to k-nearest
neighbours of a point in the feature space. We show that
these methods work as well, if not better than most recently
published methods on benchmark datasets. We compare
and contrast our analysis with the well-established diverse-
density approach and its variants in recent literature, us-
ing benchmark datasets including the Musk, Andrews’ and
Corel datasets, along with a diabetic retinopathy pathology
diagnosis dataset. Experimental results demonstrate that,
while enjoying an intuitive interpretation and supporting
fast learning, these method have the potential of delivering
improved performance even for complex data arising from
real-world applications.

1. Introduction

Multiple-instance learning (MIL) is a setting where la-
bels are provided only for a collection of instances called
bags. There are two types of instances: negative instances,
which are found in either negative bags or positive bags, and
positive instances, which are found only in positive bags.
While a positive bag should contain at least one inherently
positive instance, a negative bag must not contain any pos-
itive instances. In MIL, labels are not available at the in-

Figure 1. DR image classification as a MIL problem.

stance level. It is interesting to note however that the label-
space is the same for both at the bag level and at the instance
level. One may attempt to learn instance-level labels during
the training stage, thus reducing the problem to an instance-
level supervised classification. Alternatively, one may also
localize and prototype the positive instances in the feature
space and rely on the proximity to these prototypes for sub-
sequent classification.

MIL is an ideal set-up for many computer vision tasks
and examples of its application include object tracking [4],
image categorization [9] [26] [28] [12], scene categoriza-
tion [20] and content-based image retrieval [36]. In partic-
ular, MIL can be an especially suitable model for medical
image-based pathology classification and lesion detection-
localization, where an image is labeled pathological just be-
cause of one or a few lesions localized to small portions of
the image. Medical images collected in a clinical setting
may readily have an image-level label (either normal or var-
ious levels of pathology) while lacking the exact location of
the lesion(s). Figure 1 illustrates such an example: color
fundus images of eyes affected with different pathologies
of diabetic retinopathy (DR). It is easy to notice that, al-
though majority of the image looks normal, a small retinal
landmark is enough to alter the label of the image from nor-
mal to pathological. In a MIL formulation for this problem,
each image can be considered a bag and patches of images
can be considered instances.

Over the years, many methods have been proposed to
solve the MIL problem [10] [29] [8] [2]. The most fun-

1



P1

P2

P4

P3

Figure 2. An illustrative feature space for multiple-instance set-
ting. The ’x’ in red represents all instances from positive bags and
the ’o’ in blue represents all instances from negative bags.

damental one is the diverse density approach [19], which
has been built upon by many variants [35] [24] [9]. Di-
verse density is in its basic sense, a function so defined over
the feature space such that it is high at any point in the
feature space that is close to instances from positive bags
while being far away from instances from negative bags
and vice-versa. The various local maximas in this func-
tion are positive instance prototypes and any instance that
is closer to these prototypes are labeled inherently positive
instances. Other types of methods also exist in this set-
ting [5] [3] [27] [31].

MIL has many different variants and perspective to its
definition and indeed most MIL solutions are application
centric [1]. This can be easily seen from table 1. Earlier
methods perform as good or better in the MUSK dataset
than the ones published recently although the recent meth-
ods perform better on more complex tasks but for certain
exceptions. In this course of research while many particular
and complicated solutions are sought after, MIL has never
been sufficiently analyzed using traditional non-parametric
learning methods. Despite the recent advances, MIL re-
mains a challenging task as the feature space may be ar-
bitrarily complex, the ratio of positive to negative instances
can be arbitrarily low in a positive bag, and (by definition)
no labeling information is directly available for positive in-
stances.

To illustrate these factors, we simulate a typical MIL fea-
ture space as depicted in figure 2. Each instance belonging
to a particular cluster is independently drawn from a normal
distribution that defines the said cluster. While positive bags
can draw a subset of random cardinality of instances from
negative distributions, negative bags cannot draw any data
from positive distributions. Every positive bag must have

at least one instance sampled from a positive distribution
(marked in green ellipses P1 through P4). The centroids
of these clusters would be the ideal positive instance proto-
types that a MIL algorithm should identify. With the help of
this illustration, it is not difficult to imagine that, one or few
noisy negative instances coming close to a true positive in-
stance prototype could lower the diverse density drastically
and thus lead to a dramatic decrease in performance, and
herein lies a core argument to the MIL definition - the strict-
ness of positive neighbourhood. We show that DD-based al-
gorithms are not tolerant even to a single negative instance
in an arbitrary positive instance neighbourhood. Such strict
assumptions are not suitable for real-world (medical imag-
ing) data wherein the feature space can be noisy.

In this paper, we propose modifications to traditional
non-parametric methods adapting them to MIL. We demon-
strate their effectiveness against DD taking into consider-
ation the complex arrangements of a typical MIL feature
space. In particular, the formulation aims at easing the
dramatic impact of noisy negative instances on instance-
prototyping in DD-based approaches. The formulation
draws intuition from k-nearest-neighbour classification and
thus leads readily to an efficient learning algorithm. It em-
ploys an aggregated and weighted distance measure com-
puted from any point to its neighbouring instances labeled
according to their respective parent bags, conforming to
MIL requirement. Analysis with simulated data and ex-
periments with real data in comparison to existing state-of-
the-art approaches suggest that the proposed method, while
enjoying simplicity in formulation and learning, has the po-
tential of delivering superior performance for challenging
benchmark datasets.

The remainder of the paper is organized as follows. Sec-
tion 2 cites related works, while Section 3 describes the
proposed method. Section 4 presents the experimental set-
up and discusses results on the various evaluation datasets.
Section 5 provides concluding remarks.

2. Related Works
MIL was first introduced for the problem of drug activity

prediction [10], where axis-parallel hyper-rectangles (APR)
were used to design three variants of enclosure algorithms.
The APR algorithms tried to surround at least one positive
instance from each positive bag while eliminating any neg-
ative instances inside it. Any test bag was classified posi-
tive as long as it had at least one instance within the APR.
Conversely a bag was classified as negative when it had no
instance represented within the APR.

The first density-based formulation of MIL was diverse
density (DD) [19]. DD is not a conventional density but is
rather defined as the intersection of the positive bags against
the intersection of the negative bags. It is a measure that is
high at any point on the feature space x if x is closer to pos-
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itive instances and is farther away from negative instances.
The local maxima of DD would yield a potential concept
for the positive instances. Several local maxima can yield
several prototypes of positive instances that can be far apart
in the feature space. Some of these prototypes can be sep-
arated by other negative instances. The concept point of a
diverse density in a MIL feature space was defined as,

arg max
x

∏
i

Pr(x = t|B+
i )

∏
i

Pr(x = t|B−i ). (1)

These local maxima were termed as instance prototypes. A
noisy-or model was used to intuitively maximize the DD
in Equation 1. This was further developed to assume more
complicated and disjoint concepts in EMDD and further de-
veloped by other methods including DD-SVM and Accio
[35] [9] [24]. The major drawback of the diverse density
arises in a situation where the distribution of negative in-
stances is noisy. In other terms, if one instance prototype
has a negative distribution closer to the prototype than the
others, then its diverse density is largely lower than that of
the others, as DD unfairly favours the distribution of pos-
itive instances that is farther away from negative instances
than those that are relatively closer. This makes it hard to
define that particular prototype in such situations. Even the
presence of one noisy negative instance near the potential
instance prototype can lower the DD drastically as we show
in the later sections. In figure 2 the prototype P4 was the
twenty second largest local maxima in the DD of the feature
space. If there were a bag that contained only one positive
instance near P4 but was still close enough to the nega-
tive instances, chances are that this bag will be misclassi-
fied as negative. DD defined in such a formulation provides
a density-like function that is fickle and is easily affected
by introducing even just one negative sample closer to the
positive prototype.

The maximization procedure for DD is started from ini-
tial guesses. An idea was put forward by Chen and Wang
that the maximization should start from every instance in
every positive bag (or at least a large sample of positive
bags) so that unique local maxima in DD can be identi-
fied [9]. A plethora of methods still use this DD formula-
tion [9] [8] [24] [35] [18]. The decision boundary of a DD
system is a hyper-ellipsoid in the feature space. A kernel
based maximum-margin approach would construct hyper-
planar decision boundaries characterizing complex decision
surfaces. The first formulation of a support vector machine
(SVM) for MIL was proposed in 2002 [2]. They devised an
instance-level classifier mi-SVM and a bag-level classifier
MI-SVM. In a way, MI-SVM maximized the margin be-
tween the most positive instances and the least negative in-
stances in positive and negative bags respectively. The MI-
SVM framework is now modified and re-christened as la-
tent-SVM which plays a central role in the deformable-part

models based object recognition algorithms [12]. MILIS
provided a similar SVM-based approach with a feedback
loop to select instances that provided a higher training stage
confidence [13]. This was an idea adapted from a previously
existing related idea, MILES [8].

The first distance-based non-parametric, lazy learning
approach to MIL was taken by citation-k-NN [29]. Inter-
bag distances were found using a minimal Hausdorff dis-
tance. A k-nearest neighbour approach was used along
with this distance to classify a new bag or to retrieve closer
bags. This did not always work in a MIL setting as k-NN
uses a majority voting scheme. If a positive bag contains
fewer number of inherently positive instances than inher-
ently negative instances, majority of its neighbours are go-
ing to be negative and the algorithm was confused by the
false-positives it reported. Therefore the concept of citers
was introduced. If k-NN refereed its neighbours, then its
neighbours are cited by citers. Citers are the backward
propagated references, in the sense that they refer back the
considered instance. Though it was a generalized approach,
citation k-NN did not work as well when positive instances
were clustered and such clusters were separated by negative
instances, in which case the citers and references did not
always compliment each other.

This problem does not apply to all nearest neighbour
based approaches. Nearest neighbour approaches should be
used properly and their smart usage was discussed in [6]. A
novel concept of bag to class (B2C) distance learning was
adopted for the use of k-NN. A complimentary idea was
utilized in a MIL set-up by learning class to bag (C2B) dis-
tances by combining all training bags of a particular class
to form a super-bag [26] [31]. A similar instance specific
distance learning approach was used in [27]. On further
study, this was reformulated as a l2,1 minimax problem and
was solved with some effort [28]. A similar idea was im-
plemented to group faces in an image by considering inter
bag or bag to bag (B2B) distances in [15]. A related bag to
bag approach is used to quantify super-bags in [3].

Most of the MIL algorithms presented above assume that
the bags are independent. Though it is a reasonable as-
sumption in a computer vision context, it might not be a
general idea. Zhang et al., explored the MIL idea for struc-
tured data [34]. A data-dependent mixture model approach
was developed in [30]. Another approach designed specifi-
cally for special data space is the fast bundle algorithm for
MIL [5]. One important assumption in the early understand-
ing of MIL is that every positive bag must contain at least
one positive instance. Chen et al. felt this was too restrictive
and developed a feature mapping using instance selection
that projects a MIL problem into a much simpler supervised
learning problem using an instance similarity measure [8].
This counter-assumption was also used in a histopathology
cancer image learning system using a multiple clustered
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instance learning approach [33]. Although in a MIL for-
mulation bag level classification is sufficient and instance
level classification though clever, is not required, many al-
gorithms attempt to identify positive instances. A SVM was
used to minimize the hinge loss (modeled as slack variables)
to identify positive instances in [32]. The above methods
cater to certain particular configurations of the MIL space
and are suitable for particular domains.

3. The proposed approach
Consider figure 2. Though not universal, this figure il-

lustrates a typical MIL feature space. The instances arising
from regions P1 to P4 are potentially inherently positive
instances as they are farther away from negative instances
while being closer to other positive instances. The instances
from positive bags in other regions, along with negative in-
stances are in reality, negative instances as they rub shoul-
ders with negative instances from negative bags.

Suppose we have labeled data D =


X(1) Y (1)

X(2) Y (2)

X(3) Y (3)

...
...

X(n) Y (n)


where X(i) is the ith bag in the dataset and Y (i) ∈ {0, 1}
is its label. Internally, each bag X(i) contains mi (often is
a constant m by design, particularly in image classification
contexts) instances such that X(i) = {x(i)1 , x

(i)
2 , . . . x

(i)
mi}.

Consider a small regionR of volume V in this feature space.
The estimate for the density of instances from positive bags
is given by (|k+|)/n

V , where k+ is the set of instances from
positive bags in the region R and |k+| its cardinality, and n
is the number of instances in all of the feature space. Sim-
ilarly the estimate for the density of negative instances is
given by (|k−|)/n

V , where k− is the set of instances from
negative bags in the region R, |k−| is the number of nega-
tive instances in the region R.

Putting them together, (|k+|)/n
V − (|k−|)/n

V is a measure
that, will be high if the number of positives exceed the num-
ber of negatives in that region, will be low if the number of
negatives exceed the number of positives in that region, and
will be 0 if the number of positives equal the number of
negatives within that region. Alternatively, if one considers
a (rectangular) Parzen window,

φ(u) =

{
1, |uj | ≤ h where, j = 1, 2, ...d,

0, otherwise
(2)

the aforementioned measure can also be formulated as,

fparzen(x) =
1

n

|k+n |∑
i=1

1

V
φ(
x− k+i
h

)− 1

n

|k−n |∑
i=1

1

V
φ(
x− k−i
h

)

(3)

Figure 3. Parsing the MIL feature space with a Parzen window
technique. It can be seen that this follows the properties of a MIL
density-like.

where, x is any location on the feature space and k+i and k−i
are instances from positive and negative bags within that re-
gion respectively. Such a parsing of the MIL feature space
of figure 2 is shown in figure 3. The properties of the func-
tion fParzen(x) hold similar to that of DD and can be easily
observed in figure 3. The choice of the size of the region
(analogous to the selection of the variance for the Gaussian
in the DD formulation) and the Parzen window functions
are in line with that of a traditional Parzen window: if the
size becomes too large, the measure will not have sufficient
resolution. Picking a proper region-size would be a practi-
cal difficulty.

Instead of considering a region R of fixed size, let’s
limit to a fixed number of neighbours k. In this set-up,
we start with a region of zero volume from x and grow
two regions, one for positive instances and one for neg-
ative instances, until we just enclose for each of the re-
gions, k points respectively. This enables us to have dif-
ferent sized regions for positive and negative estimates re-
spectively. While it appears to be a simple k-NN approach
to density estimation, we emphasize that we are not using
the nearest-neighbour voting rules. In fact, a direct applica-
tion of nearest-neighbour voting technique will not work on
a MIL space as was pointed out by Wang et. al, but the idea
of nearest neighbour can still be modified and used to suit
the MIL needs [29]. The vote contributions of positive and
negative neighbours enclosed by the two regions are their
respective kernelized distances to the point x, instead of a
uniform majority vote. This aggregated vote can be formu-
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Figure 4. A region of a typical 2D MIL feature space and its parse
using the k-NN measure. Red represents positive and blue repre-
sents negative.

lated as,

fkNN (x) =

|k−|∑
i=1

Ψ(||x− k−i ||)−
|k+|∑
i=1

Ψ(||x− k+i ||)

such that, |k+| = |k−| = k. (4)

where, Ψ(.) is a monotonically increasing sub-modular
function, k is the number of neighbours considered, and k+

and k− are now the set of k instances from positive and
negative bags that are the nearest to x respectively. Ψ(.) is
used as a way to scale distances when the featurespace is
arbitrarily large. It can be considered as normalization. For
all our experiments, we typically use Ψ(x) = x.

The advantage of fixing the number of neighbours is that
in a region where there are no points or very few number
of points, we will get a block of uniform measure and in a
region where there is a high density of points, we will get a
smoothly varying measure. Such a measure is shown in fig-
ure 4. The impact of the number of neighbours k is similar
to that of the size of the regionR in the Parzen window idea.
If k is too small, the measure is going to give information
about a very small local region and is thereby unreliable.
If k is too large , the impact of proximity is going to be
averaged out.

Learning

Learning under this formulation is a straight forward
threshold learning and this is done by maximizing the vali-
dation accuracy. An instance-level classifier using this mea-
sure can be constructed as,

h(x) = 1{fkNN (x) ≥ T} (5)

This is an indicator function that outputs 1 if the measure
is above a threshold T and 0 if the measure is below the
threshold T . We can use this instance-level classifier to con-
struct a bag-level classifier.

b(X) = 1{
m∑
i=1

h(xi) ≥ a}∀x1, x2, . . . , xm ∈ X. (6)

This is an indicator function that classifies the bag 1 if it has
at least a instances classified as positive and 0 other-wise.
Typically in most MIL settings a = 1, although this need
not be the case generally. The aim of this non-parametric
empirical risk minimization formulation is to minimize the
training error,

ˆε(b) =
1

n

n∑
i=1

1{b(X(i)) 6= Y (i)}, ∀(X,Y ) ∈ D. (7)

by estimating T̂ that best minimizes ˆε(b) as,

T̂ = arg min
T

ˆε(b) (8)

Once the threshold is learnt, classification is performed
directly by using the bag-level classifier in equation 6 with
the learnt threshold. Note that in MIL, it is not required,
although possible in this case, to label each instance in the
bag. The labeling of instances can be as follows:

y(x) = h(x)|T=T̂ (9)

This process equivalent to maximizing the equation 15
(or 3) for all points of feature space and considering the
local maximas as instance prototypes, as was described by
Chen et. al, for the DD formulation [9]. This now enables
comparison to prototyping-based methods. Such a formula-
tion can now be re-written as,

x̂ = arg max
x

[ |k−|∑
i=1

Ψ(||x− k−i ||)−
|k+|∑
i=1

Ψ(||x− k+i ||)

]
,

such that,|k+| = |k−| = k. (10)

where x̂ is a prototype positive instance. One advantage
of using equation 10 is that once the prototypes are found,
we neither need the entire dataset anymore nor do we need
to calculate distances to all the points in the dataset. The
prototypes easily divide the featurespace into probabilis-
tic Voronoi tessellations such as in figure 4, or we could
estimate a radius around every prototype to isolate hyper-
spherical regions that are positive.

We solve this optimization problem by using an idea sim-
ilar to the one used in [9]. We start a local gradient ascent
from every instance from every positive bag in the train-
ing dataset and find a local maxima. Since such maximas
can only ever end in a high density region of true positive
instances from positive bags and since we start each gradi-
ent ascent from every instance in every positive bag, each
ascent is computationally tractable in small number of iter-
ations. Indeed, often few well-chosen instances from posi-
tive bags make this convergence faster and such techniques
can be found for maximizing the DD in various papers pre-
viously surveyed in section 2. Similar techniques can be
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applied here as well. All the local maximas are sorted (after
non-maximal suppression) and top N are considered as in-
stance prototypes. It is to be noted that for the dataset shown
in figure 2, while the top 5 maximas were enough to find all
four prototypes for our approach, it takes top 24 maximas
for DD to find the four prototypes.

The k for k-NN is picked here by a typical elbow
method. Once local maximas (instance prototypes) are
found we can again maximize a validation accuracy jointly
for all instance prototypes to find a threshold of classifica-
tion for each prototype in terms of the distance to the pro-
totype, hence creating a hyper-spherical decision regions
around each prototype. Thus the decision boundaries of this
method creates a tessellation of the feature space. The tes-
sellation is a set of hyper-spherical regions around a positive
prototype with varying radii.

4. Experiments and Results
In this section we provide details of our experiments

and the results from those experiments. We evaluated
our method using three standard MIL datasets: the musk
dataset, Andrew’s datasets, the Corel datasets (both 1k and
2k), and our own dataset: the DR dataset. For all the results
shown on all the datasets, we used the most common imple-
mentation methodologies, including data splits, cross vali-
dations and average over runs that were found in literature.
This enabled us to compare against results that were pub-
lished in the same. When results were not available or when
the protocol doesn’t match, we evaluated the results using
the codes from CMU MIL toolbox1. In case of MILES, the
results were obtained by using the author’s original code2.
As per our best knowledge the results provided were ob-
tained for best parameter settings using grid search.

4.1. Musk dataset

An accepted evaluation dataset in the MIL literature
is the musk dataset. The musk dataset is well-described
in [10]. Musk dataset is a benchmark feature space used to
predict drug activity. MUSK 1 contains 92 molecules with
47 musk and 45 non-musk molecules. MUSK 2 contains
102 molecules with 39 musk and 63 non-musk molecules.
Each bag contains variable number of instances with 166 di-
mensional features and binary labels. We use the standard
implementation specifications that is used in the original
APR paper and other published literature: ten-fold cross-
validation over the entire dataset, since its easier to com-
pare against a plethora of methods [10]. Table 1 compares
the performance of various algorithms against the proposed
method. It can be seen that the proposed method is best
in MUSK 1 and among the high performing methods in

1CMU MIL toolbox: http://www.cs.cmu.edu/˜juny/MILL
2MILES homepage: http://www.cs.olemiss.edu/˜ychen/

MILES.html

Methods MUSK 1 MUSK 2
DD [19] 88.9% 82.5%

EM-DD [35] 84.8% 84.9%
citation (k)-NN [29] 92.4% 86.3%

mi-SVM [2] 87.4% 83.6%
MI-SVM [2] 77.9% 84.3%
DD-SVM [9] 85.8% 91.3%
MILES [8] 86.3% 87.7%

MIforest [31] 85% 82%
MILIS [13] 88.6% 91.1%

ISD [27] 85.3% 79.0%
ALP-SVM [3] 87.9% 86.6%

MIC-Bundle [5] 84% 85.2%
Ensemble [18] 89.22% 85.04%

Proposed 92.4% 86.4%

Table 1. Performance of various MIL algorithms on the musk
dataset.

MUSK 2. MUSK datasets are uni-concept datasets. For in-
stance, in MUSK 1, among a total of 476 unique instances
each with feature values ranging from -348 degrees to 336
degrees, there are only 633 unique feature values. In such
a heavily quantized feature space that is 166 dimensional,
detecting one potential instance prototype is easier for den-
sity based algorithms. Our method while being the best in
the MUSK 1 data, is also among the better in the MUSK 2
data.

4.2. Andrew’s datasets

Andrews et. al, in their mi-SVM paper proposed the use
of three classification datasets, elephant, fox and tiger, for
the use of evaluating multiple-instance learning [2]. These
are now popular benchmark datasets in the MIL literature.
We also test our algorithm on these datasets using the same
specifications mentioned on the said article. Each dataset
has 200 images with 100 positive and 100 negative images.
The number of instances in each category are 1391, 1320
and 1220 respectively with varying number of instances per
bag. Each instance is a 230 dimensional feature vector. We
train on a 2/3 random split of the data and test on the re-
maining 1/3 of the unseen data. The results are maximized
over 15 runs of validation and are shown in table 2. Our
result while being the best in the Elephant and Fox classes
is almost as good as the best in the Tiger class. It is to be
noted that we are significantly higher in the Fox class which
is widely considered to be a notoriously noisy dataset for
MIL ergo a strong indicator of our method’s adaptability.

4.3. Corel dataset

Corel is another well known, image categorization
dataset for MIL benchmarking. The Corel-2k dataset con-
sists of 2000 images. There are 20 classes and each class
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Methods Elephant Fox Tiger
citation k-NN [29] 79.2% 62.5% 82.6%

mi-SVM [2] 79.7% 62.9% 79%
MILES [8] 70% 56% 62%

MIforest [31] 84% 64% 82%
ISD [27] 77.9% 63% 85.3%

ALP-SVM [3] 84% 69% 86%
MIC-Bundle [5] 80.5% 58.3% 79.11%
Ensemble [18] 84.25% 63.05% 79.30%

Proposed 86% 73.94% 85.7%

Table 2. Performance of various MIL algorithms on Andrew’s
dataset.

Methods Corel-1k Corel-2k
mi-SVM [2] 76.4% 53.7%
MI-SVM [2] 75.1% 55.1%
MILES [8] 82.3% 68.7%

DD-SVM [9] 81.5% 67.5%
MILIS [13] 83.8% 70.1%

Proposed 87.3% 71.9%

Table 3. Performance of various MIL algorithms on Corel dataset.

consists of 100 images. The Corel-1k dataset is a subset
of this dataset with the first 10 difficult categories. Ta-
ble 3 shows the performance of the proposed approach in
the corel dataset. It is to be noted that we are producing
the best results in the Corel dataset. Training-testing data is
again a 2/3− 1/3 split.

4.4. A DR dataset

As was briefly discussed in section 1, DR image clas-
sification is an application especially suitable for MIL. In
practice, the difficulty in this problem arises from the fact
that the physical and observable difference between a nor-
mal eye and a pathological eye can be very small, localizing
to regions with slightly different characteristics. This can be
seen in figure 1.

A variety of classification and retrieval schemes have
been tried on DR images. Structural Analysis of the Retina
(STARE) is one of the earliest attempts to solve the DR co-
nundrum [21] [14]. STARE performs automated diagno-
sis and comparison of images to search for images similar
in content. Recently other learning approaches were de-
veloped to identify relevant patterns using local relevance
scores [23]. Application of MIL approaches to DR is gain-
ing interest in recent years [22].

In this study, we consider the auto color correlogram
(AuoCC) as a color feature, which is well-studied in the
medical imaging literature [16]. A modified and quantized
64-bin AutoCC feature is extracted for each instance in an
image. We neglect the black regions and sample 48 non-

Methods Accuracy
DD [19] 61.29%

EM-DD [35] 73.5%
citation k-NN [29] 78.7%

mi-SVM [2] 70.32%
MILES [8] 71%
Proposed 81.3%

Table 4. Performance of various MIL algorithms on DR dataset.

overlapping instances from every image. We use a high-
quality color fundus image database of 425 images com-
prising 160 normal images, and 265 affected images to test
our algorithm on. This dataset was constructed from pub-
licly available databases including DiabRetDB0 [11], Dia-
bRetDB1 [17], STARE [21] and Messidor3 and has been
used in some existing studies [7] [25]. The balance of the
database is more towards the positive bags and this makes it
more challenging for a MIL algorithm. The results were all
evaluated using a 2/3− 1/3 train-test split.

Prototyping DR instances

In the prototyping sense, each prototype of positive in-
stances should roughly correspond to one type of lesion. As
we use color features this is easily possible. We estimated
a total of about 35 different types of lesion prototypes us-
ing our algorithm and verified it with EM-DD’s prototypes.
EM-DD had its maximum accuracy at about 40 prototypes.
It is reasonable to assume from this information that there
is somewhere between 35-40 different positive prototypes,
each of which in the feature space might correspond to a
unique lesion type or character. In this feature space, the
negative instances are of three types: normal skin, nerves
and the optical disk. This is a reasonably noisy datasets and
often has only one or two instances among 48 instances that
are positive in a positive bag. Though the distribution of
the optic disk might be noisy, and the number of true posi-
tive instances are very low, the proposed algorithm has the
potential to adjust to it. Table 4 shows the results of the
proposed approach on the DR dataset, where the proposed
method stands best.

4.5. Sensitivity to labeling error

Although not an implicit feature of the proposal, we per-
form the experiments to demonstrate the proposed method’s
sensitivity to labeling error, exactly similar to the one de-
scribed in [8]. We deliberately flip the labels for a range of
percentages of labels randomly on our training split and test
the trained model on the original labels in the testing split.
The split was 2/3 − 1/3. The accuracies of the proposed

3Kindly provided to us by the messidor program partners. Visit http:
//messidor.crihan.fr
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Figure 5. Accuracy vs Percentage of labels flipped for the pro-
posed method. Flatter curve is good.

Figure 6. Drop in accuracy at various noise levels for proposed and
MILES on the DR dataset. The lower the value the better.

method on various datasets are shown in figure 5. After
about 20% of labels are corrupted, the proposed method
still loses only about 5% accuracy and only when about
one-third of the labels are corrupted, the proposed method
loses about 10% accuracy. The average drop in accuracy
for both the proposed method and MILES are compared in
figure 6. It is clear that MILES and the proposed algorithm
follow the exact same trend. This trend is clearly indica-
tive that the proposed method is as good as MILES and is
often times better, when it comes to sensitivity to labeling
noise. It is noteworthy that MILES is considered the state-
of-the-art benchmark for sensitivity to labeling error out of
all MIL methods published and that was one of its core con-
tributions.

5. Conclusion

In this paper, we postulate whether lazy learning ideas
can be carried over from traditional non-parametric meth-

ods for supervised learning to a MIL setup. We proposed a
simple, yet novel usage of non-parametric learning philos-
ophy to the MIL problem. In particular, we analyzed the
MIL feature space using a k- NN philosophy and proposed
a new formulation based on distances to k-nearest neigh-
bours. The new formulation was compared and contrasted
with the widely used DD formulation. The proposed ap-
proach was tested on the musk datasets, Andrews dataset
and the corel datasets, and was found to be effective. The al-
gorithm was used to solve the DR image classification prob-
lem and was found to be the best among other algorithms.
We therefore conclude that a non-parametric learning phi-
losophy to MIL not only makes intuitive sense but can also
be quite a powerful tool for most general cases.
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[19] O. Maron and T. Lozano-Pérez. A framework for multiple-
instance learning. NIPS, pages 570–576, 1998. 2, 6, 7, 11

[20] O. Maron and A. Ratan. Multiple-instance learning for nat-
ural scene classification. In IEEE ICML, volume 15, pages
341–349, 1998. 1

[21] B. McCormick and M. Goldbaum. Stare= structured analysis
of the retina: Image processing of tv fundus image. In del
USA-Japan Workshop on Image Processing, Jet Propulsion
Laboratory, Pasadena, CA, 1975. 7

[22] G. Quellec, M. Lamard, M. Abràmoff, E. Decencière,
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6. A simple case-study describing the effective-
ness of the proposed method.

In this section we demonstrate by a case-study the strict-
ness of a DD positive neighbourhood.

Consider two bags B+ and B− being positive and nega-
tive labeled respectively. Consider the instances in the bags
as such: B+ = {p, α} and B− = {α, α}; such that α be
any instance that is so far away form p so that ||p−α|| = Φ
where Φ is a large constant and e(−||p−α||) = 0. Any in-
stance prototype for a positive instance is therefore at p.

Diverse density at any point x is defined by fDD(x),

fDD(x) =

n∏
i=1

Pr(x = t|B+
i )

m∏
i=1

Pr(x = t|B−i ) (11)

for n positive and m negative bags in the data space.
Assuming independence between instances, and using the
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Figure 7. While the EMDD algorithm fails to capture one of the
prototypes(left), the proposed method does and classifies that re-
gion as positive. Tessellation of the feature space by the pro-
posed method is shown in the right. The accuracy for the proposed
method is 100% while the accuracy of EMDD is 77.4%.

noisy-or model, equation 11 can be decomposed to:

fDD(x) = [1− (1− Pr(x = t|p))(1− Pr(x = t|α))]

(1− (Pr(x = t|α))2 (12)

DD models the probability Pr(x = t|i) where i be any
instance as, e(−||i−x||

2). On the original data space, equa-
tion 12 becomes,

fDD(x) = [1− (1− e(−||p−x||))(1− e(−||α−x||))]
(1− e(−||α−x||))2 (13)

This equation can be solved at x = p and at x = α. At x =
p equation 13 becomes, fDD(p) = [1− (1−1)(1−0)](1−
0)2 = 1. For the case of N positive and M negative bags
with each positive bag containing only one positive instance
each, the above measure will be, fDD(p) = M which is
also the same case if there were M instances in the one
negative bag. Note that DD is not a true density measure.
Similarly at x = α, fDD(α) = [1−(1−0)(1−1)](1−1)2 =
0, which is also true for the many bags situation. Therefore
unless M = 0 (no negative bags at all) DD will still be
maxima at positive instance prototype.

Adding one additional negative bag with only one in-
stance (B∗ = {β}) to the existing database, equation 13
becomes,

f∗DD(x) = [1− (1− e(−||p−x||))(1− e(−||α−x||))]

(1− e(−||α−x||))2(1− e(−||β−x||
2)) (14)

At x = p, this equation yields,f∗DD(p) = 1− e(−||β−p||2).
This is a function that is exponentially decreasing in the

order of the distance between β and p. The closer the β
is to p, the exponentially lower the function is going to
become and less the difference will be between, f∗DD(p)
and f∗DD(α) as at x = α, the equation still remains at
f∗DD(α) = 0. We also find that limβ→p f

∗
DD(p) = 0 thus

nullifying the prototype as f∗DD(α) is also 0. Although in
the strict definition of MIL, such a point is not to be consid-
ered a MIL prototype, the belligerent instance could have
been noisy. This is truly the case in figure 7 for instance,
where due to the presence of a large cluster of negative
points next to a positive cluster which contains just one neg-
ative point, EMDD cannot identify the positive cluster at
all4.

The proposed MIL formulation on the other hand, learns
by threshold learning a function that can also be applied for
similar analysis purpose at any point x and can be defined
by fkNN (x) as

fkNN (x) =

|k−|∑
i=1

Ψ(||x− k−i ||)−
|k+|∑
i=1

Ψ(||x− k+i ||)

such that, |k+| = |k−| = k. (15)

For the two bag case with k = 1, and for Ψ(a) = a the
equation becomes, fkNN (x) = ||x − α|| − ||x − p||. This
equation can be solved at x = p and at x = α. At x = p,
we get fkNN (p) = ||p − α|| − ||p − p||, = Φ − 0 = Φ,
where Φ is the large distance measured between the posi-
tive instance p and the negative instance α. For the case
of N positive and M negative bags with each positive bag
containing only one positive instance each, the above mea-
sure will be, fkNN (p) = (2M − N)Φ which is also the
same case if there were M instances in the one negative
bag. Notice how unlike DD, where for the case of M nega-
tive bags andN negative bags, the value ofN didn’t feature
in fDD(p), our formulation is still dependent on N .

Similarly, at x = α, fkNN (α) = ||α− α|| − ||α− p|| =
−Φ, a large negative value. For the case of N positive
and M negative bags with each positive bag containing
only 1 positive instance each, the above measure will be,
fkNN (p) = −NΦ. Therefore unless M = 0 (no negative
bags at all) the proposed approach will still be maxima at
positive instance prototype.

Introducing the third bag into the dataset, we
getfkNN (x) = ||x−α||−||x−p||+||x−β||.At x = p, this
yields,fkNN (p) = ||p−α||−||p−p||+ ||p−β|| = Φ−0+
||p−β||. One can notice here, that as limβ→p fkNN (p) = Φ
which is the same as the previous case without the negative
bag. On the other hand,at x = α, the function becomes,
fkNN (α) = 0 − Φ + ||α − β||. As limβ→p fkNN (α) = 0
which is still Φ, a large value, away from the prototype.
Thereby the prototype is still not nullified unlike in the case
of DD.

4We use EMDD to maximize the DD for instance prototypes in this
case.
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7. Analogical difference between DD and the
proposed formulation.

It is easy to wonder if the proposed formulation is the
non-parametric analogy to DD and thus be decomposable
from one to another. In this section we attempt to show the
fundamental analogical differences between the two formu-
lations and thereby elucidate the philosophical differences
between the two.

Consider DD,

fDD(x) =

n∏
i=1

Pr(x = t|B+
i )

m∏
j=1

Pr(x = t|B−j ) (16)

where n is the number of positive bags in the dataset and
m is the number of negative bags in the dataset. Taking log
we get,

flDD(x) = log

[
n∏
i=1

Pr(x = t|B+
i )

m∏
j=1

Pr(x = t|B−j )

]
(17)

=

n∑
i=1

log[Pr(x = t|B+
i )] +

m∑
j=1

log[Pr(x = t|B−j )]

(18)
by making an independence (iid) assumption for all the

instances in each bag (as is done all through the MIL litera-
ture and first introduced in DD itself [19])

=

n∑
i=1

log[

|B+
i |∏

k=1

Pr(x = t|b+i,k)]+

m∑
j=1

log[

|B−
i |∏

l=1

Pr(x = t|b−j,l)]

(19)

=

n∑
i=1

|B+
i |∑

k=1

log[Pr(x = t|b+i,k)]+

m∑
j=1

|B−
i |∑

l=1

log[Pr(x = t|b−j,l)]

(20)
where an instance b+/−i,j is the jth instance from the ith

bag and the +/− represents the bag being positive or neg-
ative and |B+

r | and |B−r | represents the cardinality of the
rth positive and negative bags respectively. Making the sub-
stitution Pr(x = t|a) = exp(Ψ(||x − a||)) in the above
equation for any instance represented here by a, we get,

flDD(x) =

n∑
i=1

|B+
i |∑

k=1

Ψ(||x−b+i,k||)+

m∑
j=1

|B−
i |∑

l=1

Ψ(||x−b−j,l||)

(21)

This equation sums up all the values of all the instances
in all the bags, both positive and negative and weights them
exponentially. In essence this equation is the energy distri-
bution of all instances positive and negative with respect to
x. This equation cannot decompose into equation 15, where
negative instances are weighted additively and positive in-
stances are weighted subtractively so as to find regions that
are closer to positive instances and farther away from nega-
tive instances. The essence of the proposed method is to get
away from the DD formulation using bags and to get into
the instance space and perform a NN-like instance space
tessellation and therein lies the analogical difference be-
tween the proposed method and DD.

8. Computational Complexity

From the above discussion on decomposing DD into
sums, one can observe that computationally, to estimate
functional value at each x (abstracting out the procedure of
optimization), the DD form takes O(no + mq) where o is
the expected value of number of instances present in a pos-
itive bag and q is the expected value of number of instances
present in a negative bag. For the k-NN method that com-
plexity is only O(2k), where k << n and k << m.

Since estimating time taken for training and testing de-
pends on coding methodologies, choice of optimization
solvers, the authors couldn’t provide timing information.
From the various comparisons that the authors have per-
formed on several synthetic datasets and against the EMDD
code authored by Yixen Chen himself, the authors ten-
tatively find the proposed method three times faster than
EMDD on average. Similar trends are observed in other
datasets as well.

Considering the fact that the proposed method always
achieves better accuracy with comparatively lesser number
of prototypes than EMDD, just the fact that one has to deal
with less number of prototypes also significantly increases
the speed during both testing and training time. It is also
noteworthy that once after training, we find the prototypes
and the radii associated with them, we no longer need to
calculate a points’ distances using equation 4 all the time,
we could simply use the threshold. In this case we only
require the prototypes.

9. Sensitivity to k

The number of neighbors k doesn’t have as strong an
influence on generalization unless the number is too less or
too high. The accuracy usually plateaus in a large range
of k. All discussions that have been made on choosing a
good k for traditional kNN also apply to this formulation
as well. We use the ”elbow method” to fix a k manually, as
mentioned in the paper. We performed an experiment on the
MUSK2 dataset by varying k over a large range and plotted
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Figure 8. Accuracy vs k. It can be noted that accuracy stabilizes.

the accuracy vs k. The plot is shown in figure 8.
A rule of thumb for picking k is the intuition that you

need as many members as half the noisy instances you want
to allow around a positive prototype. In this intuition, one
may think of choosing k analogous to choosing slack in a
support vector machine.
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