
Mul$ple	Instance	Space	

Conclusions	

We	proposed	a	simple,	yet	novel	use	
of	MIL	featurespace	using	non-
parametric	methods	that	yields	as	
good	if	not	be<er	results	than	SOTA.		

Results	

Ragav	Venkatesan,	Parag	Shridhar	Chandakkar,	Baoxin	Li	
	Arizona	State	University.	

References	
[1] O. Maron and T. Lozano-P´erez. A framework for multiple instance 
learning. NIPS, pages 570–576, 1998. 
[2] Q. Zhang and S. Goldman. Em-dd: An improved multiple instance 
learning technique. Advances in neural information processing systems, 
14:1073–1080, 2001. 

 
[3] Y Chen, J. Bi, and J. Z. Wang. Miles: Multiple instance learning via 
embedded instance selection. Pattern Analysis and Machine Intelligence, 
IEEE Transactions on, 28(12):1931–1947, 2006. 
[4] Q. Wang, L. Si, and D. Zhang. A discriminative data dependent mixture-
model approach for multiple instance learning in image classification,. In In 
Proceedings of the 12th European Conference on Computer Vision 
(ECCV-12), 2012. 
 
 IEEE International Conference on Computer Vision 2015, Santiago, Chile.  

P1

P2

P4

P3

•  Bag is a collection of instances.
•  Training set has bag-level labels.
•  To learn: instance-level labels for 

unseen and seen bags.
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Related	Methods	
•  Diverse	Density	
•  ExpectaEon-MaximizaEon	Diverse	

Density	
•  MILES	
•  …		

All methods in literature are 
parametric density estimators or 

parametric embedders

Diverse Density: 

Proposed Method: 

Method	

•  Maximization is performed by from many initial points.
•  All initial points are only instances from positive bags.
•  Y. Chen proposed this methodology of optimization for MIL [3]

Prototyping	
•  Prototyping is the process of maximizing the density-likes to produce points of interest on the space.
•  In a MIL setting a positive prototype is that point on the feature space that maximizes the formulation.
•  This is because the formulation describes the ‘positivity condition’. The heat maps show the ‘positivity’.

•  We can now construct hyper-spherical decision boundaries around these prototypes.

applied here as well. All the local maximas are sorted (after
non-maximal suppression) and top N are considered as in-
stance prototypes. It is to be noted that for the dataset shown
in figure 2, while the top 5 maximas were enough to find all
four prototypes for our approach, it takes top 24 maximas
for DD to find the four prototypes.

The k for k-NN is picked here by a typical elbow
method. Once local maximas (instance prototypes) are
found we can again maximize a validation accuracy jointly
for all instance prototypes to find a threshold of classifica-
tion for each prototype in terms of the distance to the pro-
totype, hence creating a hyper-spherical decision regions
around each prototype. Thus the decision boundaries of this
method creates a tessellation of the feature space. The tes-
sellation is a set of hyper-spherical regions around a positive
prototype with varying radii.

4. Experiments and Results

In this section we provide details of our experiments
and the results from those experiments. We evaluated
our method using three standard MIL datasets: the musk
dataset, Andrew’s datasets, the Corel datasets (both 1k and
2k), and our own dataset: the DR dataset. For all the results
shown on all the datasets, we used the most common imple-
mentation methodologies, including data splits, cross vali-
dations and average over runs that were found in literature.
This enabled us to compare against results that were pub-
lished in the same. When results were not available or when
the protocol doesn’t match, we evaluated the results using
the codes from CMU MIL toolbox1. In case of MILES, the
results were obtained by using the author’s original code2.
As per our best knowledge the results provided were ob-
tained for best parameter settings using grid search.

4.1. Musk dataset

An accepted evaluation dataset in the MIL literature
is the musk dataset. The musk dataset is well-described
in [10]. Musk dataset is a benchmark feature space used to
predict drug activity. MUSK 1 contains 92 molecules with
47 musk and 45 non-musk molecules. MUSK 2 contains
102 molecules with 39 musk and 63 non-musk molecules.
Each bag contains variable number of instances with 166 di-
mensional features and binary labels. We use the standard
implementation specifications that is used in the original
APR paper and other published literature: ten-fold cross-
validation over the entire dataset, since its easier to com-
pare against a plethora of methods [10]. Table 1 compares
the performance of various algorithms against the proposed
method. It can be seen that the proposed method is best
in MUSK 1 and among the high performing methods in

1CMU MIL toolbox: http://www.cs.cmu.edu/
˜

juny/MILL

2MILES homepage: http://www.cs.olemiss.edu/
˜

ychen/

MILES.html

Methods MUSK 1 MUSK 2
DD [19] 88.9% 82.5%

EM-DD [35] 84.8% 84.9%
citation (k)-NN [29] 92.4% 86.3%

mi-SVM [2] 87.4% 83.6%
MI-SVM [2] 77.9% 84.3%
DD-SVM [9] 85.8% 91.3%

MILES [8] 86.3% 87.7%
MIforest [31] 85% 82%
MILIS [13] 88.6% 91.1%

ISD [27] 85.3% 79.0%
ALP-SVM [3] 87.9% 86.6%

MIC-Bundle [5] 84% 85.2%
Ensemble [18] 89.22% 85.04%

Proposed 92.4% 86.4%

Table 1. Performance of various MIL algorithms on the musk
dataset.

MUSK 2. MUSK datasets are uni-concept datasets. For in-
stance, in MUSK 1, among a total of 476 unique instances
each with feature values ranging from -348 degrees to 336
degrees, there are only 633 unique feature values. In such
a heavily quantized feature space that is 166 dimensional,
detecting one potential instance prototype is easier for den-
sity based algorithms. Our method while being the best in
the MUSK 1 data, is also among the better in the MUSK 2
data.

4.2. Andrew’s datasets

Andrews et. al, in their mi-SVM paper proposed the use
of three classification datasets, elephant, fox and tiger, for
the use of evaluating multiple-instance learning [2]. These
are now popular benchmark datasets in the MIL literature.
We also test our algorithm on these datasets using the same
specifications mentioned on the said article. Each dataset
has 200 images with 100 positive and 100 negative images.
The number of instances in each category are 1391, 1320
and 1220 respectively with varying number of instances per
bag. Each instance is a 230 dimensional feature vector. We
train on a 2/3 random split of the data and test on the re-
maining 1/3 of the unseen data. The results are maximized
over 15 runs of validation and are shown in table 2. Our
result while being the best in the Elephant and Fox classes
is almost as good as the best in the Tiger class. It is to be
noted that we are significantly higher in the Fox class which
is widely considered to be a notoriously noisy dataset for
MIL ergo a strong indicator of our method’s adaptability.

4.3. Corel dataset

Corel is another well known, image categorization
dataset for MIL benchmarking. The Corel-2k dataset con-
sists of 2000 images. There are 20 classes and each class
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Methods Elephant Fox Tiger
citation k-NN [29] 79.2% 62.5% 82.6%

mi-SVM [2] 79.7% 62.9% 79%
MILES [8] 70% 56% 62%

MIforest [31] 84% 64% 82%
ISD [27] 77.9% 63% 85.3%

ALP-SVM [3] 84% 69% 86%

MIC-Bundle [5] 80.5% 58.3% 79.11%
Ensemble [18] 84.25% 63.05% 79.30%

Proposed 86% 73.94% 85.7%

Table 2. Performance of various MIL algorithms on Andrew’s
dataset.

Methods Corel-1k Corel-2k
mi-SVM [2] 76.4% 53.7%
MI-SVM [2] 75.1% 55.1%
MILES [8] 82.3% 68.7%

DD-SVM [9] 81.5% 67.5%
MILIS [13] 83.8% 70.1%

Proposed 87.3% 71.9%

Table 3. Performance of various MIL algorithms on Corel dataset.

consists of 100 images. The Corel-1k dataset is a subset
of this dataset with the first 10 difficult categories. Ta-
ble 3 shows the performance of the proposed approach in
the corel dataset. It is to be noted that we are producing
the best results in the Corel dataset. Training-testing data is
again a 2/3� 1/3 split.

4.4. A DR dataset

As was briefly discussed in section 1, DR image clas-
sification is an application especially suitable for MIL. In
practice, the difficulty in this problem arises from the fact
that the physical and observable difference between a nor-
mal eye and a pathological eye can be very small, localizing
to regions with slightly different characteristics. This can be
seen in figure 1.

A variety of classification and retrieval schemes have
been tried on DR images. Structural Analysis of the Retina
(STARE) is one of the earliest attempts to solve the DR co-
nundrum [21] [14]. STARE performs automated diagno-
sis and comparison of images to search for images similar
in content. Recently other learning approaches were de-
veloped to identify relevant patterns using local relevance
scores [23]. Application of MIL approaches to DR is gain-
ing interest in recent years [22].

In this study, we consider the auto color correlogram
(AuoCC) as a color feature, which is well-studied in the
medical imaging literature [16]. A modified and quantized
64-bin AutoCC feature is extracted for each instance in an
image. We neglect the black regions and sample 48 non-

Methods Accuracy
DD [19] 61.29%

EM-DD [35] 73.5%
citation k-NN [29] 78.7%

mi-SVM [2] 70.32%
MILES [8] 71%
Proposed 81.3%

Table 4. Performance of various MIL algorithms on DR dataset.

overlapping instances from every image. We use a high-
quality color fundus image database of 425 images com-
prising 160 normal images, and 265 affected images to test
our algorithm on. This dataset was constructed from pub-
licly available databases including DiabRetDB0 [11], Dia-
bRetDB1 [17], STARE [21] and Messidor3 and has been
used in some existing studies [7] [25]. The balance of the
database is more towards the positive bags and this makes it
more challenging for a MIL algorithm. The results were all
evaluated using a 2/3� 1/3 train-test split.

Prototyping DR instances

In the prototyping sense, each prototype of positive in-
stances should roughly correspond to one type of lesion. As
we use color features this is easily possible. We estimated
a total of about 35 different types of lesion prototypes us-
ing our algorithm and verified it with EM-DD’s prototypes.
EM-DD had its maximum accuracy at about 40 prototypes.
It is reasonable to assume from this information that there
is somewhere between 35-40 different positive prototypes,
each of which in the feature space might correspond to a
unique lesion type or character. In this feature space, the
negative instances are of three types: normal skin, nerves
and the optical disk. This is a reasonably noisy datasets and
often has only one or two instances among 48 instances that
are positive in a positive bag. Though the distribution of
the optic disk might be noisy, and the number of true posi-
tive instances are very low, the proposed algorithm has the
potential to adjust to it. Table 4 shows the results of the
proposed approach on the DR dataset, where the proposed
method stands best.

4.5. Sensitivity to labeling error

Although not an implicit feature of the proposal, we per-
form the experiments to demonstrate the proposed method’s
sensitivity to labeling error, exactly similar to the one de-
scribed in [8]. We deliberately flip the labels for a range of
percentages of labels randomly on our training split and test
the trained model on the original labels in the testing split.
The split was 2/3 � 1/3. The accuracies of the proposed

3Kindly provided to us by the messidor program partners. Visit http:
//messidor.crihan.fr
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