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Abstract. With the advent of progressive format display and broadcast technologies, video deinterlacing has become
an important video processing technique. Numerous approaches exist in literature to accomplish deinterlacing. While
most earlier methods were simple linear filtering-based approaches, the emergence of faster computing technologies
and even dedicated video processing hardware in display units has allowed higher quality, but also more computation-
ally intense, deinterlacing algorithms to become practical. Most modern approaches analyze motion and content in
video to select different deinterlacing methods for various spatiotemporal regions. In this paper, we introduce a family
of deinterlacers that employs spectral residue to choose between and weight control grid interpolation based spatial
and temporal deinterlacing methods. The proposed approaches perform better than the prior state-of-the-art based on
peak signal-to-noise ratio (PSNR), other visual quality metrics, and simple perception-based subjective evaluations
conducted by human viewers. We further study the advantages of using soft and hard decision thresholds on th visual
performance.
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1 Introduction

Deinterlacing is the process of converting an interlaced video format to a progressive video format.

Interlaced video formats can be very useful when bandwidth is limited and are also well-suited for

scanning display systems. Interlaced videos are scanned in such a way that in any given frame

with N rows, only N/2 alternate rows are newly updated from the previous frame. The remaining

rows are updated in the next frame, and when the series of interlaced frames are displayed quickly

enough, humans are unable to detect the unchanged lines (since the human eye doesn’t update

quickly enough). Interlaced videos are generally preferred in video broadcast and transmission

systems. Interlaced videos are also preferred in high motion videos where vertical frequency is

compromised to get a higher frame rate.

Video interlacing motivates many tasks pertaining to international TV broadcasting, format

conversion for example. Moreover, many modern display systems operate on progressive video
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Fig 1 Example of poor deinterlacing from a high-definition YouTube video.

streams and thus require a deinterlacer. Poor deinterlacing can be observed today in a wide range

of consumer products. Figure 1 shows such a product from a recent YouTube video. Even though

deinterlacing is a longstanding topic in video processing and numerous approaches have been

taken to solve the problem, there is renewed interest due to recent developments in high speed and

dedicated video processing hardware in display systems.

Bellers and Haan defined deinterlacing formally as:

F̂ (i, j, k) =


F (i, j, k), j mod 2 = k mod 2

F I(i, j, k), otherwise,

(1)

where F is the original interlaced video, F I is an interpolated version of F in progressive format,

F̂ is the deinterlaced video, k is the frame index, and i and j are the row and column matrix coor-

dinates, respectively, that specify a pixel location within a frame.26 It is the interpolator estimating

F I(i, j, k) that the deinterlacer’s quality depends on.

Based on the type of interpolator used to estimate F I(i, j, k), a deinterlacer can be classified

as spatial, temporal, or a combination of both. Spatial interpolators interpolate within a given
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frame and are usually preferred when there is a high degree of motion in the video. In such

cases, the content of the video changes too quickly for temporal interpolators to perform well.

Temporal interpolators work exclusively across frames and work well when there is little motion.

Most modern deinterlacers employ method switching algorithms that use different estimates or

combinations of different estimates from different interpolators for particular regions of video.

Motion in the video is usually the preferred basis for method switching; in a region of video with

high motion a near-spatial interpolator is preferred. In this paper, we propose a novel perception-

inspired approach to such interpolator selection.

The regions of video that are perceptually salient are those that the human eye fixates upon and

are thus effectively updated more often by the human visual system than those regions that are not

perceptually salient. Good cinematographers ensure that the region with most activity is always

salient .1 With this understanding, it follows that the salient regions of the video, those that need to

be updated more often, are better off interpolated using data from as small a temporal window as

possible (preferably from within the same frame). A purely background pixel that doesn’t change

across two frames, on the other hand, can be fully temporally averaged well. However, many other

non-salient regions can be interpolated more effectively using a spatio-temporal approach. This

assertion form the foundation of the proposed family of algorithms.

Spectral residue in the context of perception is quite well studied.2 The quaternion Fourier

implementation of spectral residue was studied first by Zhang et al. 3 In this paper, we use a

similar saliency map and spectral residue in weighting to linearly combine spatial and temporal

interpolator contributions. The spatial and temporal interpolators that we use are one-dimensional

(1D) control grid interpolation (1DCGI), and two-dimensional (2D) control grid interpolation

(2DCGI), respectively4.5 1DCGI is an intra-frame optical flow-based interpolator that works
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like an edge-directed interpolator, and 2DCGI is a more traditional optical flow-based temporal

interpolator. While neither one of these methods alone is best for deinterlacing, a combination of

the two yields perceptually beneficial results. In this paper we study such combinations.

The rest of the paper is organized as follows: Section 2 covers related work, Section 3 explains

the proposed approaches, Section 4 describes the experiments, Section 5 documents the results,

and Section 6 provides concluding remarks.

2 Related work

A straight forward temporal deinterlacer takes the form:

F̂LA(i, j, k) =


F (i, j, k), j mod 2 = k mod 2

F (i,j,k−1)+F (i,j,k+1)
2

, otherwise.

(2)

This method is called the Temporal line average (LA), simply LA, or the bob algorithm .26 The

algorithm performs well when there is very little motion. Many modern method switching algo-

rithms still incorporate LA as one of the methods when the difference across two frames is lower

than a threshold.

A fully spatial non-linear interpolator that works within a small window is the Extended LA

or Edge-based LA (ELA)6.7 Figure 2 shows the window of operation of ELA. While interpolating

for the point X , three directional differences are estimated as C1 = |a − f |, C2 = |b − e|, and

C3 = |c− d|, where a, b, c, d, e, and f are defined as in Figure 2. The minimum difference among

C1, C2, and C3 is chosen. The interpolated value for X is then the average of the two points that

corresponded to the minimum difference.
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Fig 2 Neighborhoods for STELA and ELA.

Many edge-based interpolators similar to ELA have also been proposed. One efficient ELA

implementation (EELA) uses directional spatial correlation instead of angular edge directions .8

The low complexity interpolation method for deinterlacing (LCID) uses four directions rather than

the three used in ELA.9 Instead of estimating edge directions using differences, LCID uses the

edges from a sobel filtered image and interpolates along the detected edges.10

Spatio-temporal edge-based median filtering (STELA) adds a temporal component to an intra-

frame deinterlacer like ELA.11 STELA is a two-pronged approach. It divides a video frame into low

frequency and high frequency frames. In the low frequency frame, STELA works on a 3 × 3 × 3

neighborhood as shown in Figure 2. It estimates six directional differences unlike ELA, which

works with only three. The six directional differences are C1 = |a − f |, C2 = |b − e|, C3 =

|c − d|, C4 = |g − l|, C5 = |h − k|, and C6 = |i − j|. The deinterlaced estimate for any

point X = Med{A, b, e, h, k}, where A is the average value of the two points that yield the

minimum directional change among C1 through C6 and Med, is a median operator. Although A

is the preferred value for X , the median filter is added as a backup in case there is noise in the

video. Whenever there is noise in the video and that alters the decision to choose A, the median

eliminates the noisy pixel and still provides an acceptable result. The high frequency frames are
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subject to line doubling or weaving. The line doubled version is then added to the processed low

frequency frames. STELA showed that spatio-temporal methods work better than purely spatial

deinterlacers like ELA when the interlaced video contains both low-motion background regions

and fast-changing foreground regions.

A computationally efficient spatio-temporal deinterlacer is the vertical temporal filter (VTF).12

VTF is a filtering algorithm and is defined as:

F̂ V TF (i, j, k) =


F (i, j, k), j mod 2 = k mod 2

∑
l

∑
m Fk+l(i, j +m)hl(m), otherwise,

(3)

where Weston proposed the filter hl(m) to be:

hl(m) =


1
2
, 1
2

(m = −1, 1 & l = 0)

− 1
16
, 1
8
,− 1

16
(m = −2, 0, 2 & l = −1, 1).

(4)

VTF is not an adaptive algorithm like STELA or ELA but is still among the most popular deinter-

lacing algorithms because of its computational efficiency. Adaptations of the algorithm are seen

in deinterlacing literature as late as 2013. Content adaptive VTF (CAVTF) and spatially registered

VTF or SRVTF are two examples13.14

CAVTF is a two-step algorithm where each pixel is classified into one of three classes by

using a modified adaptive dynamic range encoding. Once each pixel is classified and provided

sufficient temporal differences exist, an adaptive version of VTF is implemented wherein filter

values depends on the neighborhood pixel values. SRVTF is a VTF algorithm applied not to the
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interlaced video but to spatially registered frames. A global motion estimation is performed to

estimate motion vectors vx and vy as:

(v∗x, v
∗
y) = argmin

(vx,vy)∈MV

∑
|F (i, j, k − 1)− F (i+ vx, j + vy, k + 1)|, (5)

where the motion vectors MV don’t span more than 8 pixels in either direction ({(vx, vy)| −

8 ≤ vx, vy ≤ 8; vx, vy are even}).13 After estimating the motion vectors, spatial registration is

performed as:

F SR(i, j, k − 1) = F (i− v∗x/2, j − v∗y/2, k − 1) (6)

and

F SR(i, j, k + 1) = F (i+ v∗x/2, j + v∗y/2, k + 1). (7)

Traditional VTF is performed on the spatially registered frames F SR to get F̂ SR. A frame-

difference-like technique is used as a reality check to make sure that the registered frames do

perform better than the original VTF. The frame differences are d1 and d2, which are defined as:

3d1 = |F SR(i, j − 2, k − 1)− F SR(i, j − 2, k + 1)|+ |F SR(i, j, k − 1)− F SR(i, j, k + 1)|

+ |F SR(i, j + 2, k − 1)− F SR(i, j + 2, k + 1)| (8)

and
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3d2 = |F (i, j − 2, k − 1)− F (i, j − 2, k + 1)|+ |F (i, j, k − 1)− F (i, j, k + 1)|

+ |F (i, j + 2, k − 1)− F (i, j + 2, k + 1)|.

(9)

Deinterlacing is performed as:

F̂ SR(i, j, k) =


∑

l

∑
m F

SR(i, j +m, k + l)hl(m) if(d1 < d2)

F̂ V TF otherwise.

(10)

The reasoning behind registration is that compensation for motion yields more suitable pixel neigh-

bors for VTF to work with. This along with a second level verification using the frame differences,

which gives the option to revert back to the original VTF, makes the algorithm robust.

While VTF is a fixed range filter, a non-local means filter-based approach was proposed by

Wang et al. that estimates a missing pixel using an adaptive weighted average of all pixels in a

patch-matched neighborhood.15 By choosing an optimal range for the patch matching algorithm,

good performance is achieved without compromising efficiency. Hong et al. use a similar distance-

based weighting scheme to weight their sinc-based interpolator.16 An example of a purely motion-

based approach is deinterlacing using hierarchical motion analysis.17 This method uses motion

analysis (in four-stages), pixel estimation, and pixel correction procedures to generate a likely

pixel estimate. Although this method performs well, it is computationally expensive.

8



3 Proposed Algorithms

The proposed family of algorithms are method switching approaches that choose either a temporal

average or a linearly weighted combination of spatially and temporally interpolated estimates. The

spatially interpolated estimate is generated with 1DCGI and the temporally interpolated estimate

with 2DCGI4.5 The choice is based on a threshold frame difference and the linear weights are the

normalized spectral residues. At the core of the idea is the use of spectral residue to make a choice

between the spatial and temporal interpolators. The link between spectral residue and human

perception is studied in.2 Spectral residues for color images are estimated using the quaternion

Fourier transform approach in.3 The quaternion Fourier transform of an image is studied in.18 Any

color image can be represented using quaternions of the form:

q(i, j, k) = Ch1(i, j, k) + Ch2(i, j, k)µ1 + Ch3(i, j, k)µ2 + Ch4(i, j, k)µ3, (11)

where µp for p = 1, 2, 3 satisfies µ2
p = −1, µ1 ⊥ µ2, µ2 ⊥ µ3, and µ1 ⊥ µ3. The three color

channels of an image can be allocated to Ch2, Ch3, and Ch4, respectively, while Ch1 is set to

zero.

The quaternion Fourier transform (QFT) of an image is:

Q(u, v, k) =
1√
WH

W−1∑
j=0

H−1∑
i=0

eµ
2π(

jv
W

+ iu
H

)

1 q(i, j, k), (12)

and its inverse is:

q(i, j, k) =
1√
WH

W−1∑
v=0

H−1∑
u=0

eµ
2π(

jv
W

+ iu
H

)

1 Q(u, v, k), (13)

where q(i, j, k) represents intensity samples in the spatial domain, Q(u, v, k) represents intensity
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Fig 3 Mother video (left) and the detected saliency (right) after thresholding by B=4% of the bit depth.

samples in the frequency domain, and W and H are the width and height of the image in pixels,

respectively. The phase spectrum of an image can be extracted byQphase = Q
||Q|| . An approximation

to spectral residue can be obtained by Gaussian smoothing of the inverse QFT, qphase. The L1

norm of such a smoothed phase is also a measure of the visual saliency of the image.3 Since we

use the spectral residue for weighting between spatial and temporal interpolators, we normalize

the spectral residue as:

S(i, j, k) =
||g ∗ qphase(i, j, k)||1

max(||g ∗ qphase(i, j, k)||1)
. (14)

An example of the resulting saliency map is shown in Figure 3. Unlike SRVTF that uses motion

as a region classifier, we use the spectral residue.

Two kinds of deinterlacers can be formulated in this manner: a hard decision deinterlacer

(HDD) that uses the thresholded (by B) saliency map and a soft decision deinterlacer (SDD) that

uses the normalized spectral residue. While HDD is a direct method-switching algorithm, SDD is

a method-combination algorithm. These proposed approaches are detailed in Section III-C. Since

the approaches are built upon two interpolators (1DCGI and 2DCGI) that operate in 1D and 2D,

respectively, we first briefly describe the interpolators in Section 3.1 and 3.2.

10



3.1 1D Control Grid Interpolation

The 1D control grid interpolator 1DCGI is based on the optical flow brightness constraint.19 The

brightness constraint assumes that the intensity associated with any discrete location in a source

data set is present at some location in a destination data set. Displacement vectors relating the

source and destination locations of all corresponding intensities thus define a spatial transform

between the two data sets.

Consider a row of pixel intensities from a video frame. Within the 1DCGI framework, that

row can be defined as the source data set and the neighboring row below it as the destination data

set. The brightness constraint can then be posed as:

I(i, j) = I(i+ 1, j + β), (15)

where i and j represent row and column matrix index variables, respectively, and β represents the

aforementioned displacement vector, which is horizontal or along the column index axis in this

formulation. A Taylor series expansion is then applied to form the modified brightness constraint:

I(i, j) ≈ I(i, j) +
∂I(i, j)

∂i
(1) +

∂I(i, j)

∂j
(β), (16)

which reduces to:

∂I(i, j)

∂i
(1) +

∂I(i, j)

∂j
(β) ≈ 0. (17)

Direct approaches to solving Equation 17 are sensitive to noise, which typically motivates incorpo-

ration of a smoothness constraint that is applied to the collection of displacement vectors. Instead,

1DCGI ensures smoothness by defining control point (or node) displacements at regularly spaced
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intervals and generating the intermediate displacements (for non-node locations) using linear in-

terpolation. A detailed treatment including solution mechanics is provided in .4

The transform comprised of all displacement vectors for a given source row can then be used

to accomplish inter-row directional interpolation. That is, each pair of intensities connected by

a displacement vector (one intensity residing in the source row and the other in the destination

row) is first averaged, and the averaged intensities are then placed midway between the source

and destination rows (along the displacement vectors). Finally, a new discrete row of data is

regridded at the location between the original two rows. Note that interpolants within rows at

arbitrary distances between the source and destination rows are customarily generated using a

distance weighted average. Full details of the approach are covered in .19

In the deinterlacing application, matches are made between the alternating rows of data from

an interlaced frame, which correspond to the same point in time:

I(i, j) = I(i+ 2, j + 2β+), (18)

or

I(i, j) = I(i− 2, j − 2β−), (19)

where the indices j and the rows of pixel values i − 2, j and i + 2 are known, and β+ and β−

define the horizontal (along the column index axis) displacements in each independent equation.

After being solved for, the β+ values for row i and the β− values for row i+ 2 can thus be used to

generate independent top-down and bottom-up estimates of the row of pixel intensities at row i+1

via directional interpolation. The two interpolated row estimates are typically weighted equally in
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forming the final interpolated row of pixel intensities (because the interpolated row is equidistant

from the known rows considered in the interpolation).

In practice, 1DCGI a straight forward line-to-line edge directed interpolator that is comparable

in style to ELA. In both cases, interpolation is carried out between pairs of pixels in neighboring

rows (one from each row) that are registered with displacements so as to minimize the difference

in intensity between pixels in a pair. However, in contrast to 1DCGI, ELA is limited to integer

displacements, which significantly reduces the angular resolution of the transform used to direc-

tionally interpolate.

3.2 2D Control Grid Interpolation

2D control grid interpolation (2DCGI) extends 1DCGI into two dimensions .20 Like 1DCGI ,

2DCGI is based on the optical flow brightness constraint, which is traditionally posed for a time

series of 2D data (e.g., a video) as:

I(i, j, k) = I(i+ α, j + β, k + δk), (20)

where i and j again represent row and column matrix index variables, respectively, k represents

time, α represents a vertical (along the row index axis) displacement vector, β again represents a

horizontal (along the column index axis) displacement vector, and δk represents some change in

time. Applying a partial Taylor series expansion (ignoring higher order terms) yields:

I(i, j, k) ≈ I(i, j, k + δk) +
∂I(i, j, k + δk)

∂i
(α) +

∂I(i, j, k + δk)

∂j
(β), (21)
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which can be reformatted as:

∂I(i, j, k + δk)

∂i
(α) +

∂I(i, j, k + δk)

∂j
(β) ≈ I(i, j, k) − I(i, j, k + δk), (22)

where the right hand terms of the equation simply represent frames of a video sequence separated

in time by δk.

Like the 1DCGI case, 2DCGI uses control points to ensure smoothness across displace-

ment vectors, which also facilitates optical flow-based motion estimation with very high efficiency.

However, unlike the 1DCGI case, 2DCGI orients the control points in a 2D grid structure rather

than a 1D vector. Intermediate displacements that originate from in between nodes on the con-

trol point grid are generated with bilinear interpolation. Note that like 1DCGI , 2DCGI does

not simply calculate control point displacements and then fill in other displacements via interpo-

lation after the fact. Rather, the whole collection of displacements (those at nodes and otherwise)

is solved for concurrently through the use of basis functions (linear and bilinear for 1DCGI and

2DCGI , respectively) .5 In both cases the resulting collection of displacement vectors that defines

the transform for interpolation is piecewise smooth and globally continuous. Once forward and

backward (in time) displacement vectors have been solved for between frames k and k + δk with

2DCGI , as top-down and bottom-up (in space) displacement fields were solved for between rows

with 1DCGI , a new frame of data between the original two can be generated by combining the

forward and backward inter-frame estimates in a distance weighted average. Full details of the

approach including solution mechanics are covered in .20
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3.3 Switching Schemes

The HDD can be formulated by using 1DCGI for salient regions of the video and VTF for other

regions of the video, provided there are sufficient differences among pixel values across frames.

Such an approach was first discussed by Venkatesan et al. and is described by the following

equations:21

F̂HDD
n (i, j) =



Fn(i, j), j mod 2 = n mod 2

Fn−1(i,j)+Fn+1(i,j)
2

, Dn(i, j) < T

∑
m

∑
k Fn+m(i, j + k)hm(k), Sn(i, j) < B;Dn(i, j) ≥ T

1Dn(i, j), else,

(23)

where hm(k) is Weston’s VTF, Dn(i, j) is frame difference, Sn(i, j) is the spectral residue, and

1Dn(i, j) is the 1DCGI estimate.

The novel method, SDD can be obtained by linearly weighting 1DCGI and 2DCGI estimates.

The spatially-salient regions in a video are those particular regions that the human eye localizes

first and that therefore demand the sharpness of a spatial interpolator. The non-salient regions take

time for the human eye to register and are therefore handled sufficiently well by a more smoothing

temporal interpolator. Thus, the linear choice is made as 1Dn(i, j)Sn(i, j)+2Dn(i, j)(1−Sn(i, j)).

Whenever the frame difference Dn(i, j) across two frames is lower than the threshold T , two
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intensity units for example, a frame average is performed. The SDD is formulated as:

F̂ SDD
n (i, j) =



Fn(i, j), j mod 2 = n mod 2

Fn−1(i,j)+Fn+1(i,j)
2

, Dn(i, j) < T

1Dn(i, j)Sn(i, j) + 2Dn(i, j)(1− Sn(i, j)), Dn(i, j) ≥ T,

(24)

where 1Dn(i, j) is the 1DCGI estimate of the nth frame and 2Dn(i, j) is the corresponding 2DCGI

estimate.

This method avoids the ambiguity of spatio-temporal interpolators like VTF and instead uses

a straightforward combination of a purely spatial interpolator and a purely temporal interpolator

that is based on the spectral residue. The more salient the region is, the higher the spectral residue

and the more weight the spatial estimate gets, and vice-versa. The result is a smoother transition

between the spatial and the temporal and therefore a higher quality deinterlaced video. This is

particularly noticable in videos that have a low temporal gradient or small tarnsitions locally, such

as in HD videos. The computational complexity of any method switching algorithm depends on the

complexity of the original methods being switched. The authors would like to refer the reader to the

original papers for details on computational analysis5.20 Dwitching methods may be accompanied

by increases in computational complexity due to decision making. In case of our method that

increase comes from the overhead of calculating the saliency using the spectral residue.3
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Fig 4 Interlace type 1: one frame is split into two fields.

Fig 5 Interlace type 2: each frame gets interlaced into its own respective field.

4 Experiments

4.1 Computational Experiments

The proposed family algorithms were all implemented in MATLAB along with SRVTF. The test

video set comprised of 13 commonly used CIF videos from the trace video library22 and high

definition videos from the consumer digital video library.23 These videos were manually and de-

liberately interlaced, and then deinterlaced using different algorithms. It is reasonable to conclude

from deinterlacing literature that when interlacing a video manually, videos can be considered to

be interlaced in either of two ways:

1. Fields n−1 and n are split from the same frame. A deinterlaced frame is to be reconstructed

into full resolution from the two interlaced fields. Two fields map to one deinterlaced frame

and no data is lost while interlacing. This method of manual interlacing is shown in Figure 4.
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2. Fields n− 1 and n are down-sampled from two unique frames (frames n− 1 and n, respec-

tively). One unique de-interlaced frame is to be reconstructed for every field. One field maps

to only one frame and half the data is simply thrown away while interlacing. This method of

manual interlacing is shown in Figure 5.

We interlaced the videos by using the second method. This enabled us to maintain the number of

frames, facilitating the use of reference-based computational metrics for evaluation. We calculated

the following computational metrics for each of the methods:

1. Peak signal-to-noise ratio (PSNR).

2. Visual signal-to-noise ratio (VSNR).24

3. Visual information fidelity (VIF).25

To facilitate fair comparisons with the methods in literature without bias from implementation

details, we made use of statistical relevance. That is, we used VTF (which is a fairly straightfor-

ward method to implement) as common ground. We compared the results of our methods with our

VTF results, and the results of other authors with their VTF results reported in the literature. If

MSEV TF is the mean squared error from VTF and MSEnew is the mean squared error of any new

algorithm, then the statistical relevance r (R-value) is defined as:

r = 100 ∗ [1− MSEV TF
MSEnew

]. (25)

The R-value is used to compare our methods with methods like CAVTF and SRCAVTF that were

difficult to implement fairly by ourselves.
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4.2 Subjective Experiments

Evaluating the perception-inspired philosophy of using saliency in any algorithm is difficult based

on computational metrics alone. Hence, we used a subjective evaluation to further support our

reasoning. Note that we are using this experiment to only test the effects of bad deinterlacing

on saliency and not to compare our methods as we did with computational evaluation schemes.

Specifically, we used the subjective evaluation to verify the following:

1. Poor deinterlacing in salient regions affects viewing experience more than poor deinterlacing

in non-salient regions.

2. Temporal deinterlacing in salient regions affects viewing more than spatial deinterlacing

does.

The subjective experiments were performed on 11 subjects all of whom had moderate to pro-

ficient, technical video processing knowledge. Each subject was shown a play list of videos with

the first video being the unaltered video for reference. The altered videos shown (in a randomized

order) were videos with:

1. Temporally deinterlaced non-salient regions.

2. Spatially deinterlaced non-salient regions.

3. Temporally deinterlaced salient regions.

4. Spatially deinterlaced salient regions.

The spatial and temporal interpolators were spatial weave and temporal weave algorithms, respec-

tively.26 Between each video was a four second black screen for eye-adjustment. The subjects
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were informed before the experiment that the first video was standard and that they should rate

the following four videos on a five-point scale in comparison to the first one. The subjects were

not informed on particular regions or frames that were altered. While the subjects observed and

rated the videos, their eyes were tracked to understand eye-fixation when artifacts were present

in the video. The first experiment used the foreman video. We chose the logo and its immediate

surroundings in the top left corner of the video as the non-salient region, while the salient region

was chosen to be the face. The other regions were left unaltered. The second experiment used the

akiyo video, the third used the highway video, and the fourth used the crew video, with similar

regions chosen in each as in foreman. These regions agree with the saliency model we used.

The eye-tracker used was the VT2MINI eye-tracking system by EyeTechTM Digital Systems,

Mesa, AZ, USA. The typical viewing distance was 25 inches. The tracker provided an accuracy

of 0.5 degrees at 60+ frames per second. The ambient illuminance while the experiments were

conducted was slightly below regular office lighting in the range of 200 to 275 lux.

5 Results

5.1 Computational Results

Table 1 compares the PSNRs of different deinterlacing algorithms and shows that HDD and

SDD outperform the other algorithms. It is also clear from table 2 that the R-values echo the

PSNR results from table 1. SDD performs particularly well on videos containing relatively clearly

defined saliency, which also agrees with the saliency model we used. Although a study of various

computational saliency models and their effects on region-selection for various deinterlacing meth-
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Table 1 Table of PSNR. All of the methods in this table were implemented by the authors. Care was taken to ensure
that the methods were implemented to the finest detail provided in the respective source papers.

Video STELA VTF SRVTF HDD SDD

Akiyo (CIF) 41.237 41.117 41.364 47.301 49.212
Bowing (CIF) 37.013 40.962 40.726 46.122 42.659

Bridge Far (CIF) 38.788 33.689 34.308 42.423 37.833
Container (CIF) 35.479 31.055 32.821 46.417 46.394
Deadline (CIF) 35.662 33.152 33.009 42.814 39.154
Foreman (CIF) 31.467 32.202 33.802 36.957 37.183
Galleon (CIF) 31.609 27.058 27.163 42.048 41.758

Hall Monitor (CIF) 36.942 32.023 35.027 41.892 38.578
Mother (CIF) 42.599 38.058 41.635 45.635 44.813
News (CIF) 36.855 39.088 38.045 44.597 41.539

Students (CIF) 37.086 33.436 33.954 45.173 42.887
Paris (CIF) 30.943 28.934 29.010 33.799 35.344

Sign Irene (CIF) 36.181 36.401 37.413 40.108 38.381
SVT (HD) 31.078 32.256 32.569 32.435 32.927

Intel Bottles (HD) 42.403 46.160 47.437 43.502 47.131
NTIA Lion (HD) 32.880 33.579 33.082 33.679 37.324

NTIA FoxBird (HD) 36.881 39.656 39.138 36.144 39.789
LA Clouds (HD) 45.791 46.476 44.223 45.826 46.708

LA Underboat (HD) 34.008 36.187 35.530 35.144 36.400
LA Turtles (HD) 25.994 26.040 26.034 26.958 26.047

Table 2 Table of r-values using reported results.

Video HDD SDD SRVTF SRCAVTF

Akiyo 75.92 84.49 0 40.77
Container 97.09 97.07 -0.09 71.63
Foreman 66.54 68.23 11.16 45.82

Hall Monitor 89.69 77.89 -1.07 33.61
Mother 82.52 78.88 -1.59 25.45
News 71.87 43.13 0 49.77
Paris 67.37 77.14 0.04 74.30

ods is outside the scope of this article, it is noteworthy that with more accurate saliency models the

visual quality of the proposed methods should be better.

HDD is a hard-choice algorithm that uses one or another estimate and has a higher PSNR on

average. However, the PSNR performance of HDD doesn’t necessarily prove its performance in

21



Table 3 Table of VSNR values. All of the methods in this table were implemented by the authors. Care was taken to
ensure that the methods were implemented to the finest detail provided in the respective source papers.

Videos VTF SRVTF HDD SDD

Akiyo 43.21 43.15 46.81 47.21
Bowing 36.97 36.87 47.27 47.34

Bridge Far 31.77 30.96 41.80 41.81
Container 30.12 29.94 44.16 44.21
Foreman 30.93 30.37 37.70 37.78
Galleon 26.39 26.37 45.44 45.46

Hall 32.52 31.95 43.54 43.51
News 41.02 40.85 47.36 47.69
Paris 26.93 26.94 40.16 39.21

Sign Irene 33.01 32.85 35.19 35.98
Students 28.92 29.02 42.40 42.59

LA Turtle 15.28 15.41 15.77 15.45
LA Clouds 42.13 38.27 43.60 44.26

LA Underboat 28.86 29.46 30.16 32.01
SVT 31.47 31.81 32.99 33.94

NTIA Lion 28.99 28.87 34.60 34.63
NTIA Foxbird 35.62 35.29 34.11 38.12
Intel Bottles 25.40 24.21 24.18 26.87

Table 4 Table of VIF values. All of the methods in this table were implemented by the authors. Care was taken to
ensure that the methods were implemented to the finest detail provided in the respective source papers.

Videos VTF SRVTF HDD SDD

Akiyo 0.9245 0.9244 0.9776 0.9771
Bowing 0.8551 0.8548 0.9324 0.9325

Bridge Far 0.6330 0.6056 0.7845 0.7845
Container 0.7095 0.7080 0.9558 0.9557
Foreman 0.7554 0.7509 0.8220 0.8448
Galleon 0.5261 0.5250 0.9132 0.9132

Hall 0.8183 0.8168 0.8564 0.8560
News 0.8562 0.8547 0.9331 0.9445
Paris 0.6142 0.6132 0.8812 0.8734

Sign Irene 0.7990 0.7979 0.8524 0.8545
Students 0.7503 0.7496 0.9618 0.9599

terms of visual quality. VSNR and VIF are used to compare the methods for visual quality24.25

Tables 3 and 4 show the results for VSNR and VIF, respectively. Based on these metrics, SDD
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Fig 6 Video screenshots corresponding to different algorithms. From left to right are original, VTF, SRVTF, HDD,
and SDD. From top to bottom are original and deinterlaced versions of frame 2 from foreman, akiyo, galleon, and
students videos. The performance of the proposed approaches can be best appreciated on the edges of the wall and
within the Siemens logo in the foreman video (top), and on the edges of the table in the students video (bottom).

keeps up with and often outperforms HDD. We achieve this result through linear weighting, which

provides smoother deinterlacing than hard choices. The reason this work particularly well on HD

videos is that the spatial gradients (and temporal gradients in case of SDD) involved in the optical

flow foundation of CGI are more accurate in HD cases given the more highly resolved original

data.

Figure 6 shows the deinterlaced output for one frame of some of the test videos. In the students

video, while regions like the edge of the table were deinterlaced smoothly by the proposed meth-

ods, the other methods produce jagged edges. In the same video, the hand (which is a non-salient

region) was affected by motion artifacts even using the proposed methods. This is because the

hand, being a non-salient region, was interpolated with more weight for the temporal than for the
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Fig 7 Spatially deinterlaced non-salient region of video noticed by different subjects. The heat map (hotter the region,
longer the gaze) shows the gaze locations of the subjects, for the first 33 frames after the deinterlacing is introduced.
This experiment illustrated the fact that any non-salient region of the video that are spatially deinterlaced leads to
viewer discomfort. This observation is also supported by the MOS scores.

Fig 8 Temporally deinterlaced non-salient regions of video (such as the wall in the background) missed by different
subjects. The heat map (hotter the region, longer the gaze) shows the gaze locations of the subjects, for the first 33
frames after the deinterlacing is introduced. This experiment illustrated the fact that any non-salient region of the
video that are temporally deinterlaced doesn’t affect viewing. This observation is also supported by the MOS scores.

Table 5 Table of Mean Opinion Scores (MOS). NS - Non-Salient; S-Salient. For the Crew video there was no temporal
deinterlacing for non-salient regions.

Videos NS-Spatial NS-Temporal S-Spatial S-Temporal

Foreman 3.8 3.9 3.59 2.81
Crew 3.95 N/A 3.68 1.95

Highway 3.77 3.4 2.59 2.13
Akiyo 2.81 3.36 3.72 3.68

spatial interpolator. In the foreman video, the diagonal edges in the wall and the Siemens logo,

which are non-salient regions, were more smoothly deinterlaced with the proposed methods than

with SRVTF.
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5.2 Subjective Results

While the computational results quantify the results of both the methods, we used subjective eval-

uation experiments to validate the philosophy of method switching. Note that these results are not

meant to compare two methodologies. Table 5 shows the mean opinion scores (MOS) provided by

the subjects. From the MOS results we can observe that videos that contain poorly deinterlaced

salient regions consistently received a lower score than those that contained poorly deinterlaced

non-salient regions. This is because the subjects seldom noticed (and in most cases did not no-

tice) errors in non-salient regions. Figure 8 shows examples from the foreman video where the

subjects did not notice the non-salient region around the Siemens logo that was temporally dein-

terlaced. However, the subjects did notice the same region when it was spatially deinterlaced,

which indicates that the perceptual saliency of a video is not affected by temporal de-interlacing.

Spatial deinterlacing in non-salient regions, however affects the perceptual saliency as shown in

Figure 7. This is because purely spatial deinterlacing alters the temporal frequency of the video

and thus leads to flicker artifacts that affect perceptual saliency. Accordingly, the non-salient re-

gions of a video should be temporally deinterlaced. This experiment affirms the method switching

philosophy based on which deinterlacing is performed in this paper.

6 Conclusions

In this paper, we propose a perception-inspired saliency-based approach to spatio-temporal dein-

terlacing. We use spectral residue in weighting the 1DCGI and 2DCGI interpolators, which

are spatial and temporal in nature, respectively. The deinterlacing approach was validated using a

simple subjective evaluation. Specifically, by tracking the eyes of subjects, we observed that the

viewing remained unaffected in a video wherein the non-salient regions were temporally deinter-
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laced, as compared to a video wherein the non-salient regions were spatially deinterlaced. This

observation was further supported by the mean opinion score.

The proposed family of methods were also compared against the state-of-the-art a traditional

computational metric (i.e., PSNR) as well as more progressive visual quality metrics (i.e., VSNR

and VIF). Whenever possible, a statistical relevance metric was also used to compare with the state-

of-the-art. The proposed methods outperformed the state-of-the-art based on each of the metrics

considered, which indicates that saliency-based approaches built upon the 1DCGI and 2DCGI

interpolators may represent a favorable alternative for video deinterlacing applications.

References

1 L. Itti, C. Koch, and E. Niebur, “A model of saliency-based visual attention for rapid scene

analysis,” Pattern Analysis and Machine Intelligence, IEEE Transactions on 20(11), 1254–

1259 (1998).

2 X. Hou and L. Zhang, “Saliency detection: A spectral residual approach,” in Computer Vision

and Pattern Recognition, 2007. CVPR’07. IEEE Conference on, 1–8, IEEE (2007).

3 C. Guo, Q. Ma, and L. Zhang, “Spatio-temporal saliency detection using phase spectrum

of quaternion fourier transform,” in Computer Vision and Pattern Recognition, 2008. CVPR

2008. IEEE Conference on, 1–8, IEEE (2008).

4 C. M. Zwart and D. H. Frakes, “One-dimensional control grid interpolation-based demosaic-

ing and color image interpolation,” in Proc. SPIE, 8296, 82960E (2012).

5 D. H. Frakes, L. P. Dasi, K. Pekkan, H. D. Kitajima, K. Sundareswaran, A. P. Yoganathan,

and M. J. Smith, “A new method for registration-based medical image interpolation,” Medical

Imaging, IEEE Transactions on 27(3), 370–377 (2008).

26



6 T. Doyle, “Interlaced to sequential conversion for edtv applications,” in Proc. 2nd int. work-

shop signal processing of HDTV, 412–430 (1990).

7 C. J. Kuo, C. Liao, and C. C. Lin, “Adaptive interpolation technique for scanning rate con-

version,” Circuits and Systems for Video Technology, IEEE Transactions on 6(3), 317–321

(1996).

8 T. Chen, H. R. Wu, and Z. H. Yu, “Efficient deinterlacing algorithm using edge-based line

average interpolation,” Optical Engineering 39(8), 2101–2105 (2000).

9 C. Pei-Yin and L. Yao-Hsien, “A low-complexity interpolation method for deinterlacing,”

IEICE transactions on information and systems 90(2), 606–608 (2007).

10 H. Yoo and J. Jeong, “Direction-oriented interpolation and its application to de-interlacing,”

Consumer Electronics, IEEE Transactions on 48(4), 954–962 (2002).

11 H.-S. Oh, Y. Kim, Y.-Y. Jung, A. W. Morales, and S.-J. Ko, “Spatio-temporal edge-based

median filtering for deinterlacing,” in Consumer Electronics, 2000. ICCE. 2000 Digest of

Technical Papers. International Conference on, 52–53, IEEE (2000).

12 M.Weston, “Interpolating lines of video signals,” US-patent 4,789,893 (December 1988).

13 K. Lee and C. Lee, “High quality deinterlacing using content adaptive vertical temporal fil-

tering,” Consumer Electronics, IEEE Transactions on 56(4), 2469–2474 (2010).

14 K. Lee and C. LEe, “High quality spatially registered vertical temporal filtering for deinter-

lacing,” Consumer Electronics, IEEE Transactions on 59(1), 182–190 (2013).

15 J. Wang, G. Jeon, and J. Jeong, “Deinterlacing algorithm with an advanced non-local means

filter,” Optical Engineering 51(4), 047009–1 (2012).

27



16 S.-M. Hong, S.-J. Park, J. Jang, and J. Jeong, “Deinterlacing algorithm using fixed directional

interpolation filter and adaptive distance weighting scheme,” Optical Engineering 50(6),

067008–067008 (2011).

17 Q. Huang, D. Zhao, S. Ma, W. Gao, and H. Sun, “Deinterlacing using hierarchical motion

analysis,” Circuits and Systems for Video Technology, IEEE Transactions on 20(5), 673–686

(2010).

18 T. A. Ell and S. J. Sangwine, “Hypercomplex fourier transforms of color images,” Image

Processing, IEEE Transactions on 16(1), 22–35 (2007).

19 C. M. Zwart, R. Venkatesan, and D. H. Frakes, “Decomposed multidimensional control grid

interpolation for common consumer electronic image processing applications,” Journal of

Electronic Imaging 21(4), 043012–043012 (2012).

20 D. H. Frakes, C. P. Conrad, T. M. Healy, J. W. Monaco, M. A. Fogel, S. Sharma, M. J. Smith,

and A. P. Yoganathan, “Application of an adaptive control grid interpolation technique to

morphological vascular reconstruction,” IEEE Transactions on Biomedical Engineering 50,

197–206 (2003).

21 R. Venkatesan, C. M. Zwart, and D. H. Frakes, “Video deinterlacing with control grid interpo-

lation,” in Image Processing (ICIP), 2012 19th IEEE International Conference on, 861–864,

IEEE (2012).

22 P. Seeling, F. H. Fitzek, and M. Reisslein, Video traces for network performance evalua-

tion: a comprehensive overview and guide on video traces and their utilization in networking

research, Springer (2007).

28



23 M. Pinson, “The consumer digital video library [best of the web],” Signal Processing Maga-

zine, IEEE 30(4), 172–174 (2013).

24 D. M. Chandler and S. S. Hemami, “Vsnr: A wavelet-based visual signal-to-noise ratio for

natural images,” Image Processing, IEEE Transactions on 16(9), 2284–2298 (2007).

25 H. R. Sheikh, A. C. Bovik, and G. De Veciana, “An information fidelity criterion for image

quality assessment using natural scene statistics,” Image Processing, IEEE Transactions on

14(12), 2117–2128 (2005).

26 G. De Haan and E. B. Bellers, “Deinterlacing-an overview,” Proceedings of the IEEE 86(9),

1839–1857 (1998).

List of Figures

1 Example of poor deinterlacing from a high-definition YouTube video.

2 Neighborhoods for STELA and ELA.

3 Mother video (left) and the detected saliency (right) after thresholding by B=4%

of the bit depth.

4 Interlace type 1: one frame is split into two fields.

5 Interlace type 2: each frame gets interlaced into its own respective field.

29



6 Video screenshots corresponding to different algorithms. From left to right are

original, VTF, SRVTF, HDD, and SDD. From top to bottom are original and dein-

terlaced versions of frame 2 from foreman, akiyo, galleon, and students videos.

The performance of the proposed approaches can be best appreciated on the edges

of the wall and within the Siemens logo in the foreman video (top), and on the

edges of the table in the students video (bottom).

7 Spatially deinterlaced non-salient region of video noticed by different subjects.

The heat map (hotter the region, longer the gaze) shows the gaze locations of the

subjects, for the first 33 frames after the deinterlacing is introduced. This experi-

ment illustrated the fact that any non-salient region of the video that are spatially

deinterlaced leads to viewer discomfort. This observation is also supported by the

MOS scores.

8 Temporally deinterlaced non-salient regions of video (such as the wall in the back-

ground) missed by different subjects. The heat map (hotter the region, longer the

gaze) shows the gaze locations of the subjects, for the first 33 frames after the dein-

terlacing is introduced. This experiment illustrated the fact that any non-salient

region of the video that are temporally deinterlaced doesn’t affect viewing. This

observation is also supported by the MOS scores.

List of Tables

1 Table of PSNR. All of the methods in this table were implemented by the authors.

Care was taken to ensure that the methods were implemented to the finest detail

provided in the respective source papers.

30



2 Table of r-values using reported results.

3 Table of VSNR values. All of the methods in this table were implemented by the

authors. Care was taken to ensure that the methods were implemented to the finest

detail provided in the respective source papers.

4 Table of VIF values. All of the methods in this table were implemented by the

authors. Care was taken to ensure that the methods were implemented to the finest

detail provided in the respective source papers.

5 Table of Mean Opinion Scores (MOS). NS - Non-Salient; S-Salient. For the Crew

video there was no temporal deinterlacing for non-salient regions.

31


	Introduction
	Related work
	Proposed Algorithms
	1D Control Grid Interpolation
	2D Control Grid Interpolation
	Switching Schemes

	Experiments
	Computational Experiments
	Subjective Experiments

	Results
	Computational Results
	Subjective Results

	Conclusions

