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FEATURES COMES FROM DATA

• PCA

• Dictionaries 

• Neural Networks

We know/posit that these features are the best representations of 
data for the dataset that we are currently concerned about.

What about off-the-shelf neural features?



OFF-THE-SHELF FEATURES

Extract features from a large dataset such as ImageNet

Make the feed forward network public.

Download off-the-shelf networks.

Extract features on user dataset.

Train a new classifer on top.
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Extract features from a large dataset such as ImageNet

Make the feed forward network public.

Download off-the-shelf networks.

Extract features on user dataset.
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Is there a guarantee that the downloaded features can capture the intricacies and 
idiosyncrasies of the user dataset?  



OFF-THE-SHELF FEATURES

Is there a guarantee that the downloaded features can capture the intricacies and 
idiosyncrasies of the user dataset?  

Most often not!
But we roll with it. – Because it works.



The ubiquity of downloaded CNNs
Unquestioned performance of networks trained on ImageNet

One network fits all.

But does it?





ATOMIC STRUCTURES

• CNN filters take some shapes due to the entropy of the dataset.

• Some datasets have some unique idiosyncrasies that show up as atomic 
structures.

• These may be edges and Gabor filters in the first layers and so on.
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A GENERALITY RANKING METRIC

• Generality is not a rankable concept.

• Due to the overlapping nature of feature expressions, representations aren’t usually nestable
or complete.

• Generality is only a relative concept.

• Can we use the neural training procedure and dataset performance to measure dataset 
generality ?   -Yes. 

• Very close corollary to network transferability and remembrance. [1]. 

[1] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson, “How transferable are features in deep neural networks?,” in 
Advances in Neural Information Processing Systems, 2014, pp. 3320–3328.



DETOUR …. OBSTINATE LEARNING.

• An obstinate layer is a layer whose weights are not allowed to update during training.

• Gradients are simply ignored.

• An obstinate layer and all the layers that feeds into the obstinate layers must all be 
frozen.

• Downloading a network and training only the softmax layer.

• Layer-wise pre-training.

• Dropouts (not exactly but similar).



EXPERIMENT SETUP

1. Consider two datasets 𝐷" and 𝐷#.

2. Initialize a network with random weights and train with 𝐷%.
• This network is called the base network and is represented by 𝑛 𝐷% 𝑟 .

3. Retrain 𝑛 𝐷% 𝑟 to produce 𝑛( 𝐷) 𝐷% .
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GENERALITY METRIC

• Performance of 𝑛 𝐷) 𝑟 is Ψ 𝐷) 𝑟 .

• Performance of  𝑛( 𝐷) 𝐷% is Ψ( 𝐷) 𝐷% .

• Dataset generality of 𝐷% with respect to 
𝐷) at layer 𝑘 is:

𝑔((𝐷%, 𝐷)) = 	
Ψ( 𝐷) 𝐷%
Ψ 𝐷) 𝑟



𝑔((𝐷%, 𝐷)) = 	
Ψ( 𝐷) 𝐷%
Ψ 𝐷) 𝑟

Performance that is achieved by 𝐷)	using,

• 𝑁 − 𝑘 layers worth of prejudice from 𝐷%
• 𝑘 layers worth of features from 𝐷%
• 𝑘	layers of novel knowledge from 𝐷)



PROPERTIES OF THIS GENERALITY METRIC

• 𝑔( 𝐷%, 𝐷) > 𝑔( 𝐷%, 𝐷6 →		at 𝑘 layers, 𝐷%	provides more 

general features to 𝐷)than to 𝐷6 . 
• Conversely, when initialized by 𝑛 𝐷% 𝑟 , 𝐷) has an advantage in 

learning than 𝐷6 . 

• 𝑔( 𝐷%, 𝐷% ≥ 1	∀𝑘.	

• 𝑔( 𝐷%, 𝐷) for 𝑖 ≠ 𝑗 might or might not be greater than 1.



DATASETS CONSIDERED
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SOME INTERESTING RESULTS
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PARSING THE GRAPHS
SOME SURPRISING RESULTS

• No dataset is qualitatively the most general.

• MNIST dataset is the most specific.
• Rather, MNIST dataset is one that is generalized by all datasets very highly at all 

layers. 

• MNIST dataset actually gives better accuracy when prejudiced with other datasets 
than with random intits or even when prejudiced with itself !!

• This is a strong indicator that all datasets contain all atomic structures of MNIST. 

• English and Digits are more general than Kannada !!
• While MNIST and MNISt-rotated are not general, other MNIST with backgrounds, Google 

SVHN, NIST and Char74-English are all more general than Char74-Kannada. 



INTER-CLASS DATASET GENERALITY

• 𝐷% and 𝐷) need not be entire datasets but can also be just disjoint class instances of the 
same dataset.

• For instance, we divided the MNIST dataset into two parts. 

• MNIST [4, 5, 8]	(base) and MNIST [0, 1, 2, 3, 6, 7, 9]	(retrain).

• Repeated this experiment several times with decreasing number of training samples per-
class in the retrain dataset of MNIST [0, 1, 2, 3, 6, 7, 9].	
• The testing set remained the same size. 

• We created seven such datasets with 7𝑝, 𝑝	 ∈ 	 [1, 3, 5, 10, 20, 30, 50]	samples each. 



INTRA-CLASS GENERALITY - RESULTS

• Initializing a network that was trained on only a small sub-set of well-chosen classes can 
significantly improve generalization performance on all classes.

• Even if trained with arbitrarily few samples.

• Even at the extreme case of one-shot learning.
p base k = 0 k = 1 k = 2 k = 3

1 Random - - - 55.61
MNIST[458] 73.07 73.91 76.37 77.52

3 Random - - - 73.34
MNIST[458] 83.61 87.2 85.7 87.6

5 Random - - - 83.32
MNIST[458] 90.98 92.98 92.6 92.07

10 Random - - - 81.31
MNIST[458] 91.55 93.71 93.82 95.08

20 Random - - - 87.77
MNIST[458] 95.52 95.52 97.07 96.78

30 Random - - - 88.62
MNIST[458] 96.5 97.34 97.35 97.45

50 Random - - - 90.78
MNIST[458] 96.38 97.40 97.71 97.38

Table 1. Sub-sample experiment and its generalization accu-
racies for different layers of freezing. The re-train network
was MNIST[0, 1, 2, 3, 6, 7, 9]. For obvious reasons random
initializations are trained only with all layers unfrozen, hence
the missing values.

rather than when initialized with random, if all layers were
allowed to learn. This is a strong indicator that all datasets

contain all atomic structures of MNIST.
While initially one would have assumed that Kannada

would be a general dataset, we observed the contrary. SVHN,
Char74-English and Nist generalizes better to Kannada than
even Kannada itself does. English characters seem to be a

more general set than Kananda. While counter-intuitive, this
result is immediately obvious when one pays close attention
to the filters that are learnt and the dataset itself. Kannada
is dominated by predominantly curved edges only, whereas
even MNIST has a multitude of unique atomic structures.

For the intra-class experiment described above, table 1
shows the accuracies. From the table one can observe that
even with one-sample per class, a 7-way classifier could
achieve 22% more accuracy than a randomly initialized net-
work. It is note worthy that the last row of table 1 still has 100
times less data than the full dataset and it already achieves
close to state-of-the-art accuracy even when no layer is al-
lowed to change. This is a remarkably strong indicator that
the classes [4, 5, 8] generalizes the entire dataset. We also
observed that once initialized with a general enough subset of
classes from within the same dataset, the generalities didn’t
vary among the layers like it did when we initialized with data
from outside the mother dataset. We also observed that the
more the data we used, more stable the generalities remained.
Point of take away from this experiment is that if the classes
are general enough, one may initialize the network with only
those classes and then learn the rest of the dataset even with
very small number of samples.

The colonoscopy dataset’s labels identify if a image is
deemed to be of a quality that is good enough so as to make
a diagnosis on the pathology of that particular image. Most
often the video quality in colonoscopy is affected because of
saturation when too much light is thrown at a scene. The qual-
ity is also affected due to light reflection from bodily fluids
that is also noticeable in the activations. Most of the filter col-
ors are yellowish or blueish. On an colonoscopy video most
often the video is also labelled poor quality when these colors
are present, as these colors are often present mostly because
of scattering and reflections. Having made these observations
one would arrive at the obvious conclusion that neither dataset
generalizes the other. This was indeed the result observed
from figure 3. Although, Caltech 101 seem to generalize a
bit better for even though it predominantly learns shapes, it
learns some color features also.

From all these results and observations, we could summa-
rize that one should prefer to initialize with a general dataset
that might have a lot of variability or rather generality in data,
when attempting to train with very few number of samples.
Whenever possible one must initialize the network trained by
a general dataset as this always boosts generalization perfor-
mance. When there are biased datasets with large number
of samples in some classes and fewer in others, one should
train the most general classes first. Once the network is well-
prejudiced one should start introducing the classes with fewer
number of and less general samples, provided the general
class is general enough.

5. CONCLUSIONS

In this paper, we used the performance of CNNs on a dataset
when initialized with the filters from other datasets as a tool
to measure generality. We proposed a generality metric us-
ing these generalization performances. We used the proposed
metric to compare popular character recognition datasets and
found some interesting patterns and generality assumptions
that add to the knowledge-base of these datasets. In partic-
ular, we noticed that MNIST data is one of the most spe-
cific dataset. We also found that Char74k Kannada is less
general than English datasets. We also calculated generality
on class-level within a dataset and conclude that a few well-
chosen classes used as pre-training could build a network that
is well-initialized that even with 100 times less samples, we
could learn the other classes. We also provided some practi-
cal guidelines for a CNN engineer to adopt. After performing
similar experiments on popular imaging datasets and medical
datasets, we made similar serendipitous observations.

Acknowledgments: This work was supported in part by
ARO grant W911NF1410371. Any opinions expressed in this
material are those of the authors and do not necessarily reflect
the views of ARO.
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INTRA-CLASS GENERALITY - RESULTS

• Even with one sample per class, a 7-way 
classifier could achieve 22% more accuracy 
than a randomly initialized network.

• It is note worthy that the last row of table 
still has 100 times less data than the full 
dataset and it already achieves close to 
state-of-the-art accuracy even when no 
layer is allowed to change. 

p base k = 0 k = 1 k = 2 k = 3

1 Random - - - 55.61
MNIST[458] 73.07 73.91 76.37 77.52

3 Random - - - 73.34
MNIST[458] 83.61 87.2 85.7 87.6

5 Random - - - 83.32
MNIST[458] 90.98 92.98 92.6 92.07

10 Random - - - 81.31
MNIST[458] 91.55 93.71 93.82 95.08

20 Random - - - 87.77
MNIST[458] 95.52 95.52 97.07 96.78

30 Random - - - 88.62
MNIST[458] 96.5 97.34 97.35 97.45

50 Random - - - 90.78
MNIST[458] 96.38 97.40 97.71 97.38

Table 1. Sub-sample experiment and its generalization accu-
racies for different layers of freezing. The re-train network
was MNIST[0, 1, 2, 3, 6, 7, 9]. For obvious reasons random
initializations are trained only with all layers unfrozen, hence
the missing values.

rather than when initialized with random, if all layers were
allowed to learn. This is a strong indicator that all datasets

contain all atomic structures of MNIST.
While initially one would have assumed that Kannada

would be a general dataset, we observed the contrary. SVHN,
Char74-English and Nist generalizes better to Kannada than
even Kannada itself does. English characters seem to be a

more general set than Kananda. While counter-intuitive, this
result is immediately obvious when one pays close attention
to the filters that are learnt and the dataset itself. Kannada
is dominated by predominantly curved edges only, whereas
even MNIST has a multitude of unique atomic structures.

For the intra-class experiment described above, table 1
shows the accuracies. From the table one can observe that
even with one-sample per class, a 7-way classifier could
achieve 22% more accuracy than a randomly initialized net-
work. It is note worthy that the last row of table 1 still has 100
times less data than the full dataset and it already achieves
close to state-of-the-art accuracy even when no layer is al-
lowed to change. This is a remarkably strong indicator that
the classes [4, 5, 8] generalizes the entire dataset. We also
observed that once initialized with a general enough subset of
classes from within the same dataset, the generalities didn’t
vary among the layers like it did when we initialized with data
from outside the mother dataset. We also observed that the
more the data we used, more stable the generalities remained.
Point of take away from this experiment is that if the classes
are general enough, one may initialize the network with only
those classes and then learn the rest of the dataset even with
very small number of samples.

The colonoscopy dataset’s labels identify if a image is
deemed to be of a quality that is good enough so as to make
a diagnosis on the pathology of that particular image. Most
often the video quality in colonoscopy is affected because of
saturation when too much light is thrown at a scene. The qual-
ity is also affected due to light reflection from bodily fluids
that is also noticeable in the activations. Most of the filter col-
ors are yellowish or blueish. On an colonoscopy video most
often the video is also labelled poor quality when these colors
are present, as these colors are often present mostly because
of scattering and reflections. Having made these observations
one would arrive at the obvious conclusion that neither dataset
generalizes the other. This was indeed the result observed
from figure 3. Although, Caltech 101 seem to generalize a
bit better for even though it predominantly learns shapes, it
learns some color features also.

From all these results and observations, we could summa-
rize that one should prefer to initialize with a general dataset
that might have a lot of variability or rather generality in data,
when attempting to train with very few number of samples.
Whenever possible one must initialize the network trained by
a general dataset as this always boosts generalization perfor-
mance. When there are biased datasets with large number
of samples in some classes and fewer in others, one should
train the most general classes first. Once the network is well-
prejudiced one should start introducing the classes with fewer
number of and less general samples, provided the general
class is general enough.

5. CONCLUSIONS

In this paper, we used the performance of CNNs on a dataset
when initialized with the filters from other datasets as a tool
to measure generality. We proposed a generality metric us-
ing these generalization performances. We used the proposed
metric to compare popular character recognition datasets and
found some interesting patterns and generality assumptions
that add to the knowledge-base of these datasets. In partic-
ular, we noticed that MNIST data is one of the most spe-
cific dataset. We also found that Char74k Kannada is less
general than English datasets. We also calculated generality
on class-level within a dataset and conclude that a few well-
chosen classes used as pre-training could build a network that
is well-initialized that even with 100 times less samples, we
could learn the other classes. We also provided some practi-
cal guidelines for a CNN engineer to adopt. After performing
similar experiments on popular imaging datasets and medical
datasets, we made similar serendipitous observations.

Acknowledgments: This work was supported in part by
ARO grant W911NF1410371. Any opinions expressed in this
material are those of the authors and do not necessarily reflect
the views of ARO.



MORE RESULTS…

• Once initialized with a general enough subset of classes from within the 
same dataset, the generalities didn’t vary among the layers.

• The more the data we used, more stable the generalities remained. 

• If the classes are general enough, one may initialize the network with only 
those classes and then learn the rest of the dataset even with very small 
number of samples.
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