


NEURAL DATASET
GENERALITY

RAGAV VENKATESAN
VIJETHA GATUPALLI
BAOXIN LI

Esl



SIFT HOG

ALL ABOUT THE FEATURES

GABOR
DAISY

Esl



AlexNet GoogleNet

CONVOLUTIONAL NEURAL

VGG-19 ResNet

Esl




FEATURES COMES FROM DATA

* PCA

We know/posit that these features are the best representations of

* Dictionaries —
data for the dataset that we are currently concerned about.

* Neural Networks

What about off-the-shelf neural features?




OFF-THE-SHELF FEATURES

Extract features from a large dataset such as ImageNet

Make the feed forward network public.

Download off-the-shelf networks.
Extract features on user dataset.

Train a new classifer on top.




OFF-THE-SHELF FEATURES

Extract features from a large dataset such as ImageNet

Make the feed forward network public.

Download off-the-shelf networks.
Extract features on user dataset.

Train a new classifier on top.

Is there a guarantee that the downloaded features can capture the intricacies and
idiosyncrasies of the user dataset!?




OFF-THE-SHELF FEATURES

Most often not!
But we roll with it. — Because it works.

Is there a guarantee that the downloaded features can capture the intricacies and

idiosyncrasies of the user dataset? %




The ubiquity of downloaded CNNs
Unquestioned performance of networks trained on ImageNet

One network fits all.

But does it!?







ATOMIC STRUCTURES

* CNN filters take some shapes due to the entropy of the dataset.

* Some datasets have some unique idiosyncrasies that show up as atomic
structures.

* These may be edges and Gabor filters in the first layers and so on.







A GENERALITY RANKING METRIC

* Generality is not a rankable concept.

* Due to the overlapping nature of feature expressions, representations aren’t usually nestable

or complete.

* Generality is only a relative concept.

* Can we use the neural training procedure and dataset performance to measure dataset

generality ! - Yes.

* Very close corollary to network transferability and remembrance. [I].

[1] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson, “How transferable are features in deep neural networks?,” in
Advances in Neural Information Processing Systems, 2014, pp. 3320-3328.



DETOUR .... OBSTINATE LEARNING.

* An obstinate layer is a layer whose weights are not allowed to update during training.
* Gradients are simply ignored.

* An obstinate layer and all the layers that feeds into the obstinate layers must all be

frozen.
* Downloading a network and training only the softmax layer.
* Layer-wise pre-training.

* Dropouts (not exactly but similar).




EXPERIMENT SETUP

Consider two datasets D; and D,.

Initialize a network with random weights and train with D;.

2.

* This network is called the base network and is represented by n(D;|r).

e (D;|D;)

n3(D;|D;)
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GENERALITY METRIC

* Performance of n(Dj|r) is ‘P(Dj|r).
* Performance of nk(Dlei) is LPk(Dlei).

 Dataset generality of D; with respect to
D; at layer k is:

W (D;|D;)
w(Dj|r)

gk(Du ]) —




Performance that is achieved by D; using,

* N — k layers worth of prejudice from D;
* k layers worth of features from D;
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PROPERTIES OF THIS GENERALITY METRIC

* Ik (Du ]) > g, (D;, D;) — at k layers, D; provides more
general features to D;than to D;.

* Conversely, when initialized by nn(D;|r), D; has an advantage in

learning than D; .

* 9x(D;, D;) = 1 Vk.

* Jk (Dl, ]) for i # j might or might not be greater than 1.




DATASETS CONSIDERED
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SOME INTERESTING RESULTS




Retrained CALTECH101 for different bases
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PARSING THE GRAPHS

SOME SURPRISING RESULTS

* No dataset is qualitatively the most general.

* MNIST dataset is the most specific.

* Rather, MNIST dataset is one that is generalized by all datasets very highly at all
layers.
* MNIST dataset actually gives better accuracy when prejudiced with other datasets

than with random intits or even when prejudiced with itself !!

* This is a strong indicator that all datasets contain all atomic structures of MNIST.

* English and Digits are more general than Kannada !!

* While MNIST and MNISt-rotated are not general, other MNIST with backgrounds, Google

SVHN, NIST and Char74-English are all more general than Char74-Kannada. i%\/ HI[




INTER-CLASS DATASET GENERALITY

* D; and D; need not be entire datasets but can also be just disjoint class instances of the

same dataset.
* For instance, we divided the MNIST dataset into two parts.

* MNIST [4,5, 8] (base) and MNIST [0, 1, 2, 3, 6,7, 9] (retrain).

* Repeated this experiment several times with decreasing number of training samples per-
class in the retrain dataset of MNIST [0, 1, 2, 3,6, 7, 9].

* The testing set remained the same size.

* We created seven such datasets with 7p, p € [1,3,5, 10, 20,30, 50] samples each.

1541 |
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INTRA-CLASS GENERALITY - RESULTS

* Initializing a network that was trained on only a small sub-set of well-chosen classes can

significantly improve generalization performance on all classes.

* Even if trained with arbitrarily few samples.

* Even at the extreme case of one-shot learning.

L -+-n=20 _

-

-
-
-
-

—Randomly Initialized B
- -+-n=1
—*-n=3
—+-n=5
n=10

n=230
--n =50

Number of Layers Frozen

P base k=0 |k=1|k=2| k=
1 Random - - - 55.61
MNIST[458] || 73.07 | 7391 | 76.37 | 77.52
3 Random - - - 73.34
MNIST|[458] || 83.61 87.2 85.7 87.6
5 Random - - - 83.32
MNIST[458] || 90.98 | 9298 | 92.6 | 92.07
10 Random - - - 81.31
MNIST[458] || 91.55 | 93.71 | 93.82 | 95.08
20 Random - - - 87.77
MNIST[458] || 95.52 | 95.52 | 97.07 | 96.78
30 Random - - - 88.62
MNIST[458] 96.5 | 97.34 | 97.35 | 97.45
50 Random - - - 90.78
MNIST[458] || 96.38 | 97.40 | 97.71 | 97.38




INTRA-CLASS GENERALITY - RESULTS

P base k=0 |k=1|k=2| k=3
1 Random - - - 55.61
MNIST[458] || 73.07 | 73.91 | 76.37 | 77.52
3 Random - - - 73.34
MNIST[458] || 83.61 87.2 85.7 87.6
5) Random - - - 83.32
MNIST[458] || 90.98 | 92.98 | 92.6 | 92.07
10 Random - - - 81.31
MNIST[458] || 91.55 | 93.71 | 93.82 | 95.08
20 Random - - - 87.77
MNIST[458] || 95.52 | 95.52 | 97.07 | 96.78
30 Random - - - 88.62
MNIST[458] 96.5 | 97.34 | 97.35 | 97.45
50 Random - - - 90.78
MNIST[458] || 96.38 | 97.40 | 97.71 | 97.38

* Even with one sample per class,a 7-way
classifier could achieve 22% more accuracy

than a randomly initialized network.

* It is note worthy that the last row of table
still has 100 times less data than the full
dataset and it already achieves close to
state-of-the-art accuracy even when no

layer is allowed to change.

1541 |




MORE RESULTS...

* Once initialized with a general enough subset of classes from within the

same dataset, the generalities didn’t vary among the layers.
* The more the data we used, more stable the generalities remained.

* If the classes are general enough, one may initialize the network with only
those classes and then learn the rest of the dataset even with very small

number of samples.

1541 |
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