
Novel Image Representations and Learning Tasks

by

Ragav Venkatesan

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

Approved October 2017 by the
Graduate Supervisory Committee:

Baoxin Li, Chair
Hasan Davulcu
Pavan Turaga
Yezhou Yang

ARIZONA STATE UNIVERSITY

December 2017



ABSTRACT

Computer Vision as a field has gone through significant changes in the last decade.

The field has seen tremendous success in designing learning systems with hand-crafted

features and in using representation learning to extract better features. In this disser-

tation some novel approaches to representation learning and task learning are stud-

ied. Multiple-instance learning which is generalization of supervised learning, is one

example of task learning that is discussed. In particular, a novel non-parametric k-

NN-based multiple-instance learning is proposed, which is shown to outperform other

existing approaches. This solution is applied to a diabetic retinopathy pathology

detection problem effectively.

In cases of representation learning, generality of neural features are investigated

first. This investigation leads to some critical understanding and results in feature

generality among datasets. The possibility of learning from a mentor network instead

of from labels is then investigated. Distillation of dark knowledge is used to efficiently

mentor a small network from a pre-trained large mentor network. These studies help

in understanding representation learning with smaller and compressed networks.

i



To my advisor Dr. Baoxin Li,

for six years of unremitting inspiration, inexhaustible patience and sage counsel.

ii



ACKNOWLEDGMENTS

The completion of my doctorate and this dissertation would be incomplete without

an appreciation for the many, who made this possible. I would like to begin by

thanking Prof. Baoxin Li. His presence and advice has helped me survive many-a-

failure during the course of this doctoral study. My greatest achievement in life would

be living up to his standard of integrity, pragmatism, perseverance and relentless

curiosity. I would also like to thank him for making my dream of teaching come

true in letting me teach all those important lectures both as a TA for the machine

learning course and as an instructor for the deep learning course. Preparing those

lectures helped me learn deeper insights and the deep learning course would not have

been possible without his help.

I would also like to acknowledge my dissertation committee - Prof. Pavan Turaga,

Prof. Hassan Davulcu and Prof. Yezhou Yang for all the insightful discussions and

guidance. I would also like to thank Prof. Jingrui He and Prof. Pitu Mirchandani

of ASU, Dr. Farshad Akhbari and Dr. Zafer Kadi of Intel for their discussions and

insights during key moments of my doctoral study.

I would like to thank current and past members of the Visual Representation and

Processing Group (VRPG), Yochen Lab, Data Mining and Machine Learning Lab

(DMML) and Cognitive and Ubiquitous Learning Center (CUbiC) at Arizona State

University for all the insightful discussions, arguments, debates and white board ses-

sions that led to the key insights in this dissertation. In particular, I would like

to acknowledge Dr. Parag Chandakkar, Dr. Hemanth Venkateshwara, Dr. Qiang

Zhang, Dr. Peng Zhang, Lydia Manikonda, Dr. Suhas Renganath and Dr. Archana

Paladugu. I would particularly like to acknowledge my colleagues at VRPG, Yuzhen

Ding, Vijetha Gauttpalli, Yilin Wang and Yikang Li for being tolerant of my consis-

tent overuse of the lab’s shared resources.

iii



I would like to extend my gratitude to the IT staff at the School for Computing

Informatics and Decision Systems Engineering (CIDSE), Brint MacMillan and James

White for their relentless commitment to quality of service. I also would like to

acknowledge CIDSE support staff including Monica Dugan, Pamela Dunn and the

advising staff including Arzuhan Kavak and Christina Sebring for helping me wade

through the sea of bureaucracy and clear every stage of my study at ASU on-time.

This work stemmed from efforts in several projects sponsored by the National

Science Foundation, the Office of Naval Research, the Army Research Office, and

Nokia, whose supports are greatly appreciated, although any views/conclusions in

this dissertation are solely of the author’s and do not necessarily reflect those of the

sponsors. I also gratefully acknowledge the support of NVIDIA Corporation with the

donation of GPU compute, which has been used in my research. I would also like to

acknowledge CRC press for their help in getting the Convolutional Neural Networks

in Visual Computing book published. Writing the book helped provide important

historical context for this dissertation.

Finally, I would like to thank the unwavering support of my parents and my

sister. My career would not have been possible if not for them. I would also like

to acknowledge Harshil Shah, my roommate and forever friend for all tolerating the

marker stench, loose papers and unwashed dishes for 5 years. It was a stress-free time

for me because of his constant advice and motivation.

Ragav Venkatesan

October 2017.

iv



TABLE OF CONTENTS

Page

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

CHAPTER

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.0.1 Image Representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.0.2 Multiple Instance Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.0.3 Representation Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1 Background on Hand-Crafted Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2 Deep Image Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2.1 Convolutional Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2.2 CNN Architecture Design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2 NON-PARAMETRIC MULTIPLE INSTANCE LEARNING . . . . . . . . . . . . 21

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3 The Non-parametric MIL Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3.1 Learning Under This Formulation . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.4 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.4.1 Musk Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.4.2 Andrew’s Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.4.3 Corel Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.4.4 A DR Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.4.5 Sensitivity to Labeling Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.5 A Simple Case Study Describing the Effectiveness of the Proposed

Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

v



CHAPTER Page

2.6 Analogical Difference Between DD and the Proposed Formulation. . 45

2.7 Computational Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.8 Sensitivity to k . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3 NEURAL DATASET GENERALITY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.3 Design of Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.3.1 Dataset Generality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.3.2 Class Generality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.3.3 Datasets Used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.3.4 Network Architecture and Learning . . . . . . . . . . . . . . . . . . . . . . . 59

3.4 Results and observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.4.1 Character Datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.4.2 CIFAR 10 vs. Caltech 101 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.4.3 Caltech 101 vs. Colonoscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.4.4 Summary of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4 MENTEE NETS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.3 Generalized Mentored Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.4 Design of Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.4.1 Effectiveness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

vi



CHAPTER Page

4.4.2 Generality of the Learnt Representations . . . . . . . . . . . . . . . . . . 81

4.4.3 Learning the VGG-19 Representation . . . . . . . . . . . . . . . . . . . . . . 82

4.4.4 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5 INCREMENTAL LEARNING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.2 Proposed Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.4 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.4.1 Single Dataset Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.4.2 Cross-Domain Increments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.5 Extension to Bounded-Continual Learning . . . . . . . . . . . . . . . . . . . . . . . . 110

5.5.1 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6 CONCLUSIONS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

APPENDIX

A PERMISSION STATEMENTS FROM CO-AUTHORS . . . . . . . . . . . . . . . . . 126

vii



LIST OF TABLES

Table Page

2.1 Performance of Various MIL Algorithms On the Musk Dataset. . . . . . . . 36

2.2 Performance of Various MIL Algorithms on Andrew’s Dataset. . . . . . . . . 37

2.3 Performance of Various MIL Algorithms on Corel Dataset. . . . . . . . . . . . . 38

2.4 Performance of various MIL Algorithms on DR Dataset. . . . . . . . . . . . . . . 40

3.1 Sub-sample Experiment Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

viii



LIST OF FIGURES

Figure Page

1.1 Sampling and Quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2 Histogram of Oriented Gradients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3 A Typical Dot-Product Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.4 Locally Connected Neurons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.5 A Typical Convolution Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.6 Learnt Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1 DR Image Classification as a MIL Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2 An Illustrative Feature Space for Multiple-Instance Setting . . . . . . . . . . . . 23

2.3 Parsing the MIL Feature Space with a Parzen Window . . . . . . . . . . . . . . . 29

2.4 2D MIL Feature Space and its Parse Using The k -NN . . . . . . . . . . . . . . . . 31

2.5 Performance of NP-MIL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.6 Noise Performance of NP-MIL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.7 EMDD’s Failure Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.8 Accuracy vs k . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.1 Generality Thought Experiment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2 Protocol for Obstination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.3 Dataset Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.4 Dataset Generalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.5 Learnt Filters for Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.6 Validation Errors vs Epoch Number for Base-MNIST-rotated-bg Re-

trained on MNIST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.7 Sub-class Generalities for MNIST [4, 5, 8] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.1 Mentor Mentoring Mentee on the Second Hidden Layer. . . . . . . . . . . . . . . 73

4.2 Annealing Rates α, β and η . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

ix



Figure Page

4.3 VGG-19 and Caltech 101, Annealing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.4 Architecture and Results for the Experiments with CIFAR and MNIST

Datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.5 Architecture and results for the Experiments with Caltech Datasets. . . . 86

4.6 VGG-19 First Layer Filters and Filters Probed using Caltech101 . . . . . . 87

5.1 Catastrophic Forgetting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.2 Incremental Learning Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.3 Results for the MNIST Dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.4 Results for the CIFAR10 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.5 Results for the SVHN Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.6 results for MNIST-rotated × MNIST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.7 Results for MNIST × SVHN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.8 Results for the Bounded-continual Learning Experiments . . . . . . . . . . . . . 113

x



Chapter 1

INTRODUCTION

Men and women walk out of the cave, and they look over the hill and they see fire;

and they cross the ocean; and they take to the sky; and they plant a flag on the moon.

The history of man is hung on a timeline of exploration and discovery; for the goal

of human scientific exploration is to advance human capabilities, if only to explore

further and beyond.

Humans figured out the creation of fire to cook food. This outgrew their depen-

dence on the primitive and limited processing capability of their digestive system. No

other species is known to use fire in a deliberate manner in assisting digestion, let

alone in satisfying their taste buds. This increased caloric consumption with limited

labor. Organized farming and food production surplus led to the development of civi-

lization, art and science. The invention the wheel and vehicles implied that our speed

of travel is no more limited by the speed of walking. The legend of human scientific

and technological growth is a narrative of the humanity endlessly out-growing their

capabilities in the march towards future.

These developments are courtesy the wiring in the human brain. We posses a

complex neural system capable of thought, emotion, reasoning, imagination and phi-

losophy. The human visual system is an integral part of this system. Humans do

not have the most powerful visual system among all the species. For instance, when

acuity or night-vision capabilities are concerned humans have significant deficiencies.

The human visual system is also slow Thorpe et al. (1996); Watamaniuk and Duchon

(1992). Humans are also receptive to a very narrow range of the electromagnetic

spectrum. To compensate for the lack of a powerful visual system using our powerful

1



neural system, computer vision scientists have been studying images and videos in

various forms to identify and make sense of patterns.

Humans have been developing tools to try and exceed the capability of the human

eye. Devices such as telescopes, binoculars, microscopes and magnifiers were invented

in accomplishing this goal. Other devices such as radio, infrared and X-ray devices

make us see parts of the electromagnetic spectrum, that we can not naturally per-

ceive. Modern achievements such as the LIGO interferometers extend human vision

to include gravity waves. This makes way for yet another way to look at the world.

Computer vision in the progress of technological additions to human capabilities,

is the progress of gaining knowledge from all these modalities. This, is informally,

the field of computer vision and is an amalgamation of ideas from signal processing,

statistics and machine learning.

Computer vision, the process of extracting knowledge from images and image

datasets. It is currently a prominent area of research in computer science. A typical

computer vision system involves two steps: gathering representations of images and

making inferences from those representations. This dissertation concerns the research

and development of some novel techniques in both these steps. This dissertation is

broadly divided into two parts: The first is the research and development of non-

parametric multiple instance learning algorithms using hand-crafted representations.

In this step, a new representation for a particular type of images are introduced. A

new form of non-parametric learning designed particularly for this problem statement

is studied. The second concerns the study of representations learnt using deep convo-

lutional neural networks (CNN) and some novel learning tasks performed using these

2



representations. Firstly, let us survey the basics of image representations.

1.0.1 Image Representations

Since this dissertation deals with images, it is important to understand how images

are captured, stored and represented. Images are mathematical representations of

the natural world. A view of the natural world is captured and stored as a matrix

of numbers in a computer. The process of capturing an image involves sampling and

quantization. Sampling is the process of choosing samples of light intensities arriving

at a camera. Quantization is the process of assigning a value for the light intensity

for the sample. The stored numbers are called pixels. The pixel representation is the

most fundamental image representation.

There are other representations that are secondary and can be derived from the

pixel representations. These can be derived using some deterministic process. The

mean of the image for instance is a representation of the image that can be useful

in determining if an image is dark or bright. The histogram of pixels in an image

is another useful representation that can provide more information on the tonality

of the image globally. These feature representations are often referred to as global

features. Local representations are features that work on blocks or regions of images.

Histogram of oriented gradients(HOG) for instances is a local histogram of gradients

that represents shape features locally Dalal and Triggs (2005a).

These feature representations are mostly hand-crafted with intuition and domain-

knowledge. Recently, neural networks are used that can learn feature representations

which are task-specific. In the case of images, the preferred neural network architec-

ture is that of the convolutional neural network Venkatesan and Li (2017). We will

study these features in more detail, in chapter 1.1.

3



1.0.2 Multiple Instance Learning

The most common formulation of machine learning and the one most studied is

supervised learning. Supervised learning is a setting where, we have labeled data

D =



x(1) y(1)

x(2) y(2)

...
...

x(n) y(n)


where x(i) is the ith data-point in the dataset and y(i) ∈ {0, 1} is

its label. Supervised learning is the process of learning a model that can emulate the

mapping m : x→ y. Every sample of instance in this setup has its own unique label.

Other forms of learning also exists. Multiple instance learning is a generalization

of supervised learning. It is a paradigm where labels are not available for every sample

in the training dataset. Labels are available only for sets of samples called bags. The

labels for bags and instances map on to the same space. Suppose we have labeled

data D =



X(1) y(1)

X(2) y(2)

...
...

X(n) y(n)


where X(i) is the ith bag in the dataset and y(i) ∈ {0, 1} is its

label. Each bag X(i) contains ki (often is a constant k by design, particularly in image

classification contexts) instances such that X(i) = {x(i)1 , x
(i)
2 , . . . x

(i)
ki
}. This definition

of a dataset is perfect for MIL setups.

Consider a case with only two types of labels, the positive and the negative.

Every positively labeled bag must have at least one inherently positive instance

and all negative bags must not have even a single positive instance. While this

paradigm is well-studied, non-parametric approaches are widely unexplored. Several

non-parametric ideas were explored in this effort and chapter 2 will study some of

them in detail Venkatesan et al. (2015, 2012a); Chandakkar et al. (2013a, 2017, 2012).

4



1.0.3 Representation Learning

The second thrust of research in this dissertation is in studying data-driven rep-

resentations extracted from images and image datasets using Convolutional Neural

Networks (CNNs). Obviously, in a processing pipeline where the representations are

hand-crafted by domain expertise, opportunities for performance improvements lie in

finding an informative feature representation. It is often difficult to rely on any set of

domain expertise for designing perfect features for a given problem. Computer vision

researchers have been employing techniques to learn optimal features directly from

data instead of from domain expertise.

For example, Nagest et al., Nagesh and Li (2009) proposed a novel image repre-

sentation for face recognition. They used compressive sensing theories in compactly

representing a set of images from the same subject Candes et al. (2006). Kulkarni

et al., defined image features as affine sparse codes which are learned from a large

collection of image patches Kulkarni and Li (2011). These features were then used for

image categorization. Joint feature and classier learning techniques are also popular,

where a dictionary for sparse coding as well as a classifier using the sparse repre-

sentation under the dictionary can be jointly learned from labeled data Zhang and

Li (2010). Many manifold learning techniques creates efficient representations of the

data in some sub-spaces where features for classification may be done better Belkin

and Niyogi (2002); Tenenbaum et al. (2000); Roweis and Saul (2000). The most pop-

ular of such approaches to learn representations from data (and the most general) is

by using neural networks.

Recently CNNs have resurfaced as a potent tool for addressing computer vision

problems, many under the re-branding of deep-learning. Artificial neural networks

are a class of learning approaches where the weights for an input-output algebraic

5



functional mapping is structured according to a pre-defined architecture. A brief

background on learning these techniques have been provided in chapter 1.2. The

rest of this dissertation discusses three major efforts in studying neural networks for

computer vision tasks.

Neural Dataset Generality

This effort concerns the question of generality of representations learnt from CNNs.

It is widely believed that networks that are trained with large datasets often learns

sophisticated representations. These representations can then be fine-tuned to work

with any other smaller datasets. Some datasets have data, larger in number of classes

and/or number of images than others. Some datasets can provide more diversity of

images to learn neural features from. Since the images across these datasets also

appear similar, an argument could be made that a network trained on one dataset

could potentially be used as a feature extractor for another without explicitly being

learnt or simply fine-tuned from the latter. Suppose we have two datasets where one

has considerably more number of images and object classes than the other. Suppose

we are building a CNN to learn to categorize the latter, and we use the training set of

the latter dataset alone. Since we have less data, we might overfit. Also, with fewer

images, it is difficult to train deeper and larger CNNs. If we were to train a network

on the first and destroy the softmax layer, we could now rebuild another softmax

layer for the categorization of latter dataset. All the layers but the last softmax layer

can be carried over in the hope that two datasets can use the same features. This

study challenges that view and studies the generality of some datasets over others in

regard to representations learnt from them Venkatesan et al. (2016a). Chapter 3 will

cover this in more detail.

6



Mentee Networks

It is often very difficult to train deep or even mid-sized networks from random ini-

tializations with small datasets. Weights explode and gradients vanish. Overfitting

becomes an issue in networks that are over-parameterized. Strong regularization tech-

niques are often used and needed to make the training of these networks well-behaved.

Regularization techniques such as penalizing the network for learning large L1 or L2

of parameters are popular in avoiding these problems. They simply keep the weights

small and impose sparsity. Mentoring is a regularization process where we force a

smaller or a mid-sized network to be constrained by the activities of a larger network.

Consider that we have a large network trained previously by some dataset. To train a

smaller network, we can use the outputs of the larger network as a guide. In essence,

we can penalize a small mentee network for not learning the parameters space as

approved by the large mentor network. These techniques are often applied using

the distillation process Hinton et al. (2015). This effort proposes and studies some

mentoring protocols Venkatesan and Li (2016) using these techniques. Chapter 4 will

cover this in more detail.

Incremental Learning

Multi-class supervised learning systems require the knowledge of the entire range of

labels they predict. Often when learnt incrementally, they suffer from catastrophic

forgetting. In this effort, a strategy is developed involving generative models and the

distillation of dark knowledge as a means of hallucinating data along with appropriate

targets from past distributions. This strategy is found to alleviate problems concern-

ing catastrophic forgetting and help us achieve incremental learning Venkatesan et al.

(2017). Chapter 5 will cover this in more detail.

7



R:	225
B:	200
G:			12

Figure 1.1: Sampling and Quantization: Collecting primary feature representations
from real-world.

1.1 Background on Hand-Crafted Features.

A typical computer vision pipeline starts with the lens of an imaging system that

incidents light rays from the scene and converts into into an image. This image should

be in a format that a computer could process. Earlier, the image was obtained by

digitizing an analog film or a printed picture. Modern images are typically obtained

directly by digital cameras. A digital image is usually represented by a set of ordered

numbers called pixels. For a complete study of image acquisition refer to Jain (1989);

Gonzalez and Woods (2002).

Consider figure 1.1. This figure shows two key process in image acquisition: sam-

pling (i.e., discretization via the image grid) and quantization (i.e., representing each

pixels color values with only a finite set of integers). An image is represented as a

matrix (or three matrices for RGB) of quantized numbers. Consider Figure 1. The

picture shown was captured by a camera using these steps. Let us suppose that each

sensor in the camera’s sensor array grabbed a sample of light that was incident on

8



that area of the sensor after it passed through a lens. The sensor will produce an

electric current of a certain magnitude, related to the intensity of light incident on

it. This electric current is then sampled as a sample a value between 0 and 2b − 1)

for a b-bit image. This process is called sampling and quantization, as illustrated in

figure 1.1. If the sensor array had n×m sensors, the image it produces will be n×m

in size. Each sensor grabbed a sample of light that was incident on that area of the

sensor after it passed through a lens. With sampling and quantization we are able to

represent an image in the computer as stored digital data. This representation of the

image is called the pixel representation of the image. Each representation is typically

a matrix or tensor of 1 (grayscale) or 3 (colored) channels. The ordering of the pixel

intensities is typically the same as that of the ordering of the sensor locations from

which they were collected, although vectorized representations can also be formed.

While this representation is holistic and is good to look at, it is not a great feature

representation for most ML tasks. Several secondary features could be derived from

these features that are more suitable for ML tasks. A popular secondary feature

representation is the basis representation. A basis representation can be described as

a linear projection as follows:

IT (u, v) =
n−1∑
n1=0

m−1∑
n2=0

I(n1, n2)b(n1, n2, u, v), (1.1)

where, IT (u, v) ∈ Rm×n is a representation projected on a basis b if I(n1, n2) is the

representation of the image. Often times, these representations are reversible and one

can obtain the image back using an inverse basis b′. A common set of basis are the

Fourier basis represented by,

b =
1

nm
e−j2π

(
un1
n

+
vn2
m

)
(1.2)

and

b′ = ej2π
(

un1
n

+
vn2
m

)
. (1.3)

9



Perhaps the most simplest of secondary feature is the mean intensity as described

by,

Im =
1

nm

n−1∑
n1=0

m−1∑
n2=0

I(n1, n2). (1.4)

This representation gives us the mean of the entire image and can be used to estimate

the overall brightness of the image. As simple as it is, it holds very less entropy and

is therefore not much useful. An image histogram is another common global image

feature. An 8-bit image has pixel values in the range of 0 − 255. Generally, if we

had a b-bit representation of image, we can have 2b unique quantization levels. A

normalized histogram representation of the image in this case is,

Ih(i) =
1

nm

n−1∑
n1=0

m−1∑
n2=0

I(I(n1, n2) = i), i ∈ [0, 1, . . . , 2b − 1], (1.5)

where, I, is an indicator function. While histograms are more informative than the

mean, they are still only a coarse global representation and loses a lot of useful

information. For instance, Images with different visual content might still have similar

histograms. Different retinal-scanned, fundus camera images can all have very similar

histograms even though they may can contain different pathologies Venkatesan et al.

(2012a).

We can seek representations that are local. The most common and widely-used

image features represent local image properties are edges. Edges are typically first

order gradients of images. Typically, most edges are extracted by convolving the

image with an edge filter. Consider a filter F (l, w) that is crafted such that we can

use to detect the pattern in the filter F (l, w) as defined in range [−a, a] × [−b, b] by

the following convolution:

Z(n1, n2) =
a∑

l=−a

b∑
w=−b

F (l, w)I(n1 + l, n2 + w) ∀n1, n2. (1.6)

We can use this filtering approach to detect not just edges but any patterns. We can

10



Figure 1.2: Histogram of Oriented Gradients

do this by carefully creating pattern templates for filters. One popular way to create

a sophisticated shape feature is to use the Histogram of Oriented Gradients(HOG)

extractor Dalal and Triggs (2005b).

Given an image we can extract the gradients. We may also quantize the gradient

directions into j bins. Using a non-overlapping sliding window of k × k, we could

slide through the entire image and extract patch-wise histograms of these gradients.

The value of the bin in these histograms is the magnitude of the gradient at the

corresponding direction. We will then have a j-bin histogram for every such patch.

Each bin (representing some range of angles) will represent the magnitude of that

directions gradient in that patch.

11



Figure 1.1 shows this representation. The length of the arrow describes the mag-

intude of the gradient of that bin in the orientation that arrow is pointing to. This

is a better representation of the direction of edges in a manner that is better than

gradients. HOGs are very popular in detection of shape based objects in images

particularly, human pedestrians.

These hand-crafted latent features were, for the most part, general enough that

they were used for a variety of tasks. While this school of thought continues to be

quite popular and some of these features have standardized implementations that

are available for most researchers to plug and play for their tasks, they were not

task-specific.

Hand-crafted features were designed to be useful feature representations of im-

ages that are capable of providing cues about certain aspects of images that are

agreed upon to be important based on our prior knowledge. HOG and Shape Con-

text for instance, were good shape-related information and were therefore used in

tasks involving shape and structure, such as pedestrian detection. Features like color

correlogram Venkatesan et al. (2012b); Chandakkar et al. (2013b, 2017) provided cues

on color transitions and were therefore used in medical images and other problems

where shape was not necessarily an informative feature.

In the next section we will study a popular technique used in learning to cre-

ate good features and task-specific feature extractors. These feature extractors are

learned directly from raw images with minimal and often no pre-processing. This

is quite desirable as features developed using a massive dataset that encompasses

most entropy found in the real-life can be reused for other tasks and other (smaller)

datasets.

12



1.2 Deep Image Features

Multi-layer neural networks were long since viewed as a technique for learning and

extracting hierarchical task-specific features. Ever since the early works of Rumelhart

et al., Rumelhart et al. (1985) it was recognized that representations learned by back-

propagation had the potential to learn fine-tuned features that were task-specific.

Until recently, these methods were severely hampered by a dearth of large-scale data

and large-scale parallel compute hardware to be leveraged sufficiently. This, in part,

focused the creativity of computer vision scientists to develop the aforementioned

general-purpose and hand-crafted feature representations. Recently, we developed

datasets that are large enough and GPUs that are capable of large-scale parallel

computations. This resulted in an explosion of neural image features and their usage.

In this section we will survey some of these techniques.

1.2.1 Convolutional Neural Networks

There are many types of neural networks. A neural network is a graphical con-

nection of computational neurons and can be mathematically represented as a com-

position of multiple functions Goodfellow et al. (2016). In the case of images, we are

primarily concerned with the use of a convolutional neural network (CNN).

In a computational neuron, each neuron accepts a number of inputs and produces

one output. These outputs can further be supplied to many other neurons in a

deeper hierarchy. A typical computational neuron weighs all the inputs, sums all the

weighted inputs and generates an output depending on the strength of the summed

and weighted inputs. Neurons are typically organized in groups or hierarchies called

as layers. Each layer typically receives input from one previous layer. Layers come

in three varieties, each with a unique type of a neuron. These are, the dot-product,

13



the fully-connected layer, the convolutional layer or the pooling layer. Although one

layer may contain different types of neurons, typically most layers have the same type

of neurons.

The Dot-Product Layer

Consider a 1D vector of inputs x ∈ [x0, x1, . . . xd] of d dimensions. x could be a

vectorized version of an image or could be the output of a preceding layer. Consider

a dot-product layer containing n neurons. The jth neuron of this layer will produce

the output,

zj = α

(
d−1∑
i=0

xi × wji

)
, (1.7)

where, α is typically an element-wise monotonically-increasing function that scales

the output of the dot-product. α is referred to as the activation function. The output

of this neuron that has been processed by an activation is also referred to as a neuron

activity. Inputs can be processed in batches or mini-batches. In these cases x is

a mini-batch (matrix instead of a vector) in Rb×d, where b is the batch size. The

vectorized output of the layer is the dot-product operation between the matrix of

		𝑥# 𝑥$ 𝑥% 𝑥&

𝑤$% 𝑤%% 𝑤&%
𝑤#%

Figure 1.3: A Typical Dot-Product Layer

14



		𝑥# 𝑥$ 𝑥%

Figure 1.4: Locally-connected neurons with a receptive field of r = 3.

layer’s weights and the input signal batch,

z = α(x ·w), (1.8)

where, z ∈ Rb×n, w ∈ Rd×n and the (i, j)th element of z is the output of the jth neuron

for the ith sample of input. Figure 1.3 shows the connectivity of the dot-product layer.

This layer takes in a d-dimensional input and produces a n dimensional output. The

weights of these layers are typically learned using back-propagation and gradient

descent Rumelhart et al. (1985).

The Convolution Layer

Fully-connected layers require a large amount of memory to store all their weights.

They also involve a lot of computation. Therefore, they are not ideal for use as feature

extractors for images. This is because, a dot product layer has a complete receptive

field. The receptive field of a neuron is the spatial range of input flowing into the

neuron. It is the range of the input that the neuron has access to to. In our definition

of the dot-product layer, the receptive field of a neuron is essentially the length of

15



the entire signal. As we noticed earlier, most image features have small and local

receptive fields that are typically a few tens of pixels such as 16× 16. A convolution

layer is a generalization of the fully-connected layer that has a small receptive field.

Locality arises in this connection as the input dimensions are organized spatially

implying that adjacent dimensions of inputs are locally-related. Consider a neuron

that has a reception of r = 3. Figure 1.4 demonstrates this connectivity. Each

neuron in this arrangement, is capable of only detecting a pattern in an image that

is local and small. While each location in an image could have spatially independent

features, most often in images, we find that spatial independence doesn’t hold. This

implies that one feature learned from one location of the image ought to be reasonably

assumed to be useful at all other locations.

Although Figure 1.4 shows the neurons are being independent, typically several

neurons share weights. In the representation shown in Figure 1.4, all the neurons

share the same weights . Even though we produce n − r + 1 outputs, we only use r

unique weights. The convolutional layer shown here takes a 1D input and is therefore

a 1D convolutional layer. Figure 1.5 shows a 2D convolutional layer. This figure

does not show independent neurons and their connectivities. Instead, it shows a

convolutional filter that slides over the entire image. In other words, the layer’s

weight is shared across all locations in the image. In cases where the input has more

than one channel, we convolve along all channels independently and the outputs are

summed location-wise.

The 2D convolution layer typically performs the following,

z(j, d1, d2) = α

[
C−1∑
c=0

r−1∑
u=0

r−1∑
v=0

xc,d1+u,d2+u × wju,v

]
,

∀j ∈ [0, 1, . . . n] and ∀d1, d2 ∈ [0, 1, . . . d], (1.9)

where, the weights w ∈ Rj,r,r are j sets of weights, each set being shared by several

16



Figure 1.5: A Typical Convolution Layer

17



neurons, each with a receptive field of r working on an input x ∈ Rd1×d2 . Since we

have j sets of weights shared by several neurons, we will produce j activations that

are essentially images each of size Rd−r+1×d−r+1.

In the context of convolution layers, the we also refer to the outputs as feature

maps. Figure 1.5 shows feature maps being generated at the end of a typical layer.

The convolutional layer’s filters can also be learned by back-propagation and gradient

descent. Once learned, these filters will work as pattern detectors, locally. The feature

map is a spatial map of confidence values for the existence of the local pattern, the

filter has adapted to detect, at each location.

The pooling layer

The convolution layer creates feature maps that are of size d− r+ 1 on each axis.

Activities that are spatially adjacent in each of these feature maps are related to each

other. We want to avoid storing (and processing) all activations and use only the

most prominent of these features.

This is typically accomplished by using a sub-sampling operation. This is also

often referred to as pooling and is done using non-overlapping sliding windows, where

each window will sample one activation. In CNNS, pooling by maximum (max-

pooling) is typically preferred. Note that pooling by p (widow size of p) reduces the

sizes of activations p−folds.

1.2.2 CNN Architecture Design

Akin to the design involved in hand-crafted features and in most of machine

learning, CNNs also involve some level of skilled hand-crafting. Most of designing

involves the the architecture of the network and parameters of optimization such as

choosing the types and number of layers and types of activation functions and number

of neurons in each layer. One critical design choice that arises particularly in image

18



Figure 1.6: Some filters learned by various CNNs at the first layer that is closest
to the image. From left to right are filters learned by VGG (3 × 3), a typical Yann
LeCun style LeNet (5× 5) and a AlexNet (11× 11).

data and CNNs, is the choice of the receptive fields.

The receptive field can be controlled by the size of filters (weights) in each layer

and by the use of pooling layers. The effective receptive field (in relation to the input

image) increases after each layer as the area of the signal received from the input

layer expands progressively. There are generally two philosophies guiding the choice

of filter sizes and therefore to the receptive fields. The first was promoted by Yann

LeCun et al., LeCun et al. (1998a, 1990) and was later re-introduced and widely

preferred in modern day object categorization by Alex Krizhevsky et al., Krizhevsky

et al. (2012). They employ a relatively large receptive field to begin with at the earlier

layers and keep contining growing with the rate of growth reducing by a magnitude.

The second of these philosophies begins with a relatively small receptive field and

increases it as minimally as possible. These were pioneered by the VGG group Si-

monyan and Zisserman (2014a).

Although we studied some popular network architecture design and philosophies,

several other styles of networks also exists. Here we briefly only studied those that

feed-forward from the input layer to the task layer (whatever that task might be)

and there is only one path for gradients to flow during back-propagation. Several

19



networks such as the GoogleNet Szegedy et al. (2015) and the newer implementations

of the inception layer Szegedy et al. (2016, 2017), Residual Net He et al. (2016) and

Highway Nets Srivastava et al. (2015) have been proposed that create networks with

multiple feed-forward paths allowing for more than one path to the target. One of

these paths can even involve directly feeding forward the input signal. This therefore

allows for the gradient to not vanish Bengio et al. (1994).

20



Chapter 2

NON-PARAMETRIC MULTIPLE INSTANCE LEARNING

2.1 Introduction

Multiple-instance learning (MIL) is a setting where labels are provided only for

a collection of instances called bags. There are two types of instances: negative

instances, which are found in either negative bags or positive bags, and positive in-

stances, which are found only in positive bags. While a positive bag should contain

at least one inherently positive instance, a negative bag must not contain any positive

instances. In MIL, labels are not available at the instance level. It is interesting to

note however that the label-space is the same for both at the bag level and at the

instance level. One may attempt to learn instance-level labels during the training

stage, thus reducing the problem to an instance-level supervised classification. Al-

ternatively, one may also localize and prototype the positive instances in the feature

space and rely on the proximity to these prototypes for subsequent classification.

MIL is an ideal set-up for many computer vision tasks and examples of its appli-

cation include object tracking Babenko et al. (2011), image categorization Chen and

Wang (2004) Wang et al. (2011a) Wang et al. (2012a) Felzenszwalb et al. (2010), scene

categorization Maron and Ratan (1998) and content-based image retrieval Zhang et al.

(2002). In particular, MIL can be an especially suitable model for medical image-

based pathology classification and lesion detection-localization, where an image is

labeled pathological just because of one or a few lesions localized to small portions

of the image. Figure 2.1 illustrates such an example: color fundus images of eyes

affected with different pathologies of diabetic retinopathy (DR). It is easy to notice

21



Figure 2.1: DR Image Classification as a MIL Problem. c© 2015 IEEE.

that, although majority of the image looks normal, a small retinal landmark is enough

to alter the label of the image from normal to pathological. In a MIL formulation

for this problem, each image can be considered a bag and patches of images can be

considered instances.

Over the years, many methods have been proposed to solve the MIL problem

Dietterich et al. (1997) Wang and Zucker (2000) Chen et al. (2006) Andrews et al.

(2002). The most fundamental one is the diverse density approach Maron and

Lozano-Pérez (1998), which has been built upon by many variants Zhang and Gold-

man (2001) Rahmani et al. (2008) Chen and Wang (2004). Diverse density is in its

basic sense, a function so defined over the feature space such that it is high at any

point in the feature space that is close to instances from positive bags while being far

away from instances from negative bags and vice-versa. The various local maximas

in this function are positive instance prototypes and any instance that is closer to

these prototypes are labeled inherently positive instances. Other types of methods

also exist in this setting Bergeron et al. (2012) Antić and Ommer (2013) Wang et al.

(2011b) Wang et al. (2012c).

MIL has many different variants and perspective to its definition and indeed most

22



P1

P2

P4

P3

Figure 2.2: An illustrative feature space for multiple-instance setting. The ’x’ in red
represents all instances from positive bags and the ’o’ in blue represents all instances
from negative bags. c© 2015 IEEE.

MIL solutions are application centric Amores (2013). This can be easily seen from

table 2.1. Earlier methods perform as good or better in the MUSK dataset than the

ones published recently although the recent methods perform better on more complex

tasks but for certain exceptions. In this course of research while many particular

and complicated solutions are sought after, MIL has never been sufficiently analyzed

using traditional non-parametric learning methods. Despite the recent advances, MIL

remains a challenging task as the feature space may be arbitrarily complex, the ratio

of positive to negative instances can be arbitrarily low in a positive bag, and (by

definition) no labeling information is directly available for positive instances.

23



To illustrate these factors, we simulate a typical MIL feature space as depicted

in figure 2.2. Each instance belonging to a particular cluster is independently drawn

from a normal distribution that defines the said cluster. While positive bags can draw

a subset of random cardinality of instances from negative distributions, negative bags

cannot draw any data from positive distributions. Every positive bag must have at

least one instance sampled from a positive distribution (marked in green ellipses P1

through P4). The centroids of these clusters would be the ideal positive instance

prototypes that a MIL algorithm should identify. With the help of this illustration,

it is not difficult to imagine that, one or few noisy negative instances coming close

to a true positive instance prototype could lower the diverse density drastically and

thus lead to a dramatic decrease in performance, and herein lies a core argument to

the MIL definition - the strictness of positive neighbourhood. We show that DD-

based algorithms are not tolerant even to a single negative instance in an arbitrary

positive instance neighbourhood. Such strict assumptions are not suitable for real-

world (medical imaging) data wherein the feature space can be noisy.

2.2 Related Works

MIL was first introduced for the problem of drug activity prediction Dietterich

et al. (1997), where axis-parallel hyper-rectangles (APR) were used to design three

variants of enclosure algorithms. The APR algorithms tried to surround at least

one positive instance from each positive bag while eliminating any negative instances

inside it. Any test bag was classified positive as long as it had at least one instance

within the APR. Conversely a bag was classified as negative when it had no instance

represented within the APR.

The first density-based formulation of MIL was diverse density (DD) Maron and

Lozano-Pérez (1998). DD is not a conventional density but is rather defined as the

24



intersection of the positive bags against the intersection of the negative bags. It is

a measure that is high at any point on the feature space x if x is closer to positive

instances and is farther away from negative instances. The local maxima of DD would

yield a potential concept for the positive instances. Several local maxima can yield

several prototypes of positive instances that can be far apart in the feature space.

Some of these prototypes can be separated by other negative instances. The concept

point of a diverse density in a MIL feature space was defined as,

arg max
x

∏
i

Pr(x = t|B+
i )
∏
i

Pr(x = t|B−i ). (2.1)

These local maxima were termed as instance prototypes. A noisy-or model was used to

intuitively maximize the DD in Equation 2.1. This was further developed to assume

more complicated and disjoint concepts in EMDD and further developed by other

methods including DD-SVM and Accio Zhang and Goldman (2001) Chen and Wang

(2004) Rahmani et al. (2008). The major drawback of the diverse density arises in a

situation where the distribution of negative instances is noisy. In other terms, if one

instance prototype has a negative distribution closer to the prototype than the others,

then its diverse density is largely lower than that of the others, as DD unfairly favours

the distribution of positive instances that is farther away from negative instances than

those that are relatively closer. This makes it hard to define that particular prototype

in such situations. Even the presence of one noisy negative instance near the potential

instance prototype can lower the DD drastically as we show in the later sections. In

figure 2.2 the prototype P4 was the twenty second largest local maxima in the DD

of the feature space. If there were a bag that contained only one positive instance

near P4 but was still close enough to the negative instances, chances are that this

bag will be misclassified as negative. DD defined in such a formulation provides a

density-like function that is fickle and is easily affected by introducing even just one

25



negative sample closer to the positive prototype.

The maximization procedure for DD is started from initial guesses. An idea was

put forward by Chen and Wang that the maximization should start from every in-

stance in every positive bag (or at least a large sample of positive bags) so that unique

local maxima in DD can be identified Chen and Wang (2004). A plethora of methods

still use this DD formulation Chen and Wang (2004) Chen et al. (2006) Rahmani

et al. (2008) Zhang and Goldman (2001) Li et al. (2013). The decision boundary of a

DD system is a hyper-ellipsoid in the feature space. A kernel based maximum-margin

approach would construct hyper-planar decision boundaries characterizing complex

decision surfaces. The first formulation of a support vector machine (SVM) for MIL

was proposed in 2002 Andrews et al. (2002). They devised an instance-level classi-

fier mi -SVM and a bag-level classifier MI -SVM. In a way, MI -SVM maximized the

margin between the most positive instances and the least negative instances in pos-

itive and negative bags respectively. The MI -SVM framework is now modified and

re-christened as latent-SVM which plays a central role in the deformable-part models

based object recognition algorithms Felzenszwalb et al. (2010). MILIS provided a

similar SVM-based approach with a feedback loop to select instances that provided

a higher training stage confidence Fu et al. (2011). This was an idea adapted from a

previously existing related idea, MILES Chen et al. (2006).

The first distance-based non-parametric, lazy learning approach to MIL was taken

by citation-k -NN Wang and Zucker (2000). Inter-bag distances were found using a

minimal Hausdorff distance. A k -nearest neighbour approach was used along with this

distance to classify a new bag or to retrieve closer bags. This did not always work in a

MIL setting as k -NN uses a majority voting scheme. If a positive bag contains fewer

number of inherently positive instances than inherently negative instances, majority

of its neighbours are going to be negative and the algorithm was confused by the

26



false-positives it reported. Therefore the concept of citers was introduced. If k -

NN refereed its neighbours, then its neighbours are cited by citers. Citers are the

backward propagated references, in the sense that they refer back the considered

instance. Though it was a generalized approach, citation k -NN did not work as well

when positive instances were clustered and such clusters were separated by negative

instances, in which case the citers and references did not always compliment each

other.

This problem does not apply to all nearest neighbour based approaches. Nearest

neighbour approaches should be used properly and their smart usage was discussed

in Boiman et al. (2008). A novel concept of bag to class (B2C) distance learning was

adopted for the use of k -NN. A complimentary idea was utilized in a MIL set-up by

learning class to bag (C2B) distances by combining all training bags of a particular

class to form a super-bag Wang et al. (2011a) Wang et al. (2012c). A similar instance

specific distance learning approach was used in Wang et al. (2011b). On further

study, this was reformulated as a l2,1 minimax problem and was solved with some

effort Wang et al. (2012a). A similar idea was implemented to group faces in an image

by considering inter bag or bag to bag (B2B) distances in Guillaumin et al. (2010).

A related bag to bag approach is used to quantify super-bags in Antić and Ommer

(2013).

Most of the MIL algorithms presented above assume that the bags are indepen-

dent. Though it is a reasonable assumption in a computer vision context, it might

not be a general idea. Zhang et al., explored the MIL idea for structured data Zhang

et al. (2011). A data-dependent mixture model approach was developed in Wang

et al. (2012b). Another approach designed specifically for special data space is the

fast bundle algorithm for MIL Bergeron et al. (2012). One important assumption in

the early understanding of MIL is that every positive bag must contain at least one

27



positive instance. Chen et al. felt this was too restrictive and developed a feature

mapping using instance selection that projects a MIL problem into a much simpler

supervised learning problem using an instance similarity measure Chen et al. (2006).

This counter-assumption was also used in a histopathology cancer image learning sys-

tem using a multiple clustered instance learning approach Xu et al. (2012). Although

in a MIL formulation bag level classification is sufficient and instance level classifi-

cation though clever, is not required, many algorithms attempt to identify positive

instances. A SVM was used to minimize the hinge loss (modeled as slack variables)

to identify positive instances in Wu et al. (2009). The above methods cater to certain

particular configurations of the MIL space and are suitable for particular domains.

2.3 The Non-parametric MIL Approach

Consider figure 2.2. Though not universal, this figure illustrates a typical MIL

feature space. The instances arising from regions P1 to P4 are potentially inherently

positive instances as they are farther away from negative instances while being closer

to other positive instances. The instances from positive bags in other regions, along

with negative instances are in reality, negative instances as they rub shoulders with

negative instances from negative bags.

Suppose we have labeled data D =



X(1) Y (1)

X(2) Y (2)

X(3) Y (3)

...
...

X(n) Y (n)


where X(i) is the ith bag in the

dataset and Y (i) ∈ {0, 1} is its label. Internally, each bag X(i) contains mi (often

is a constant m by design, particularly in image classification contexts) instances

such that X(i) = {x(i)1 , x
(i)
2 , . . . x

(i)
mi}. Consider a small region R of volume V in this

28



Figure 2.3: Parsing the MIL feature space with a Parzen window technique. It can
be seen that this follows the properties of a MIL density-like. c© 2015 IEEE.

feature space. The estimate for the density of instances from positive bags is given by

(|k+|)/n
V

, where k+ is the set of instances from positive bags in the region R and |k+|

its cardinality, and n is the number of instances in all of the feature space. Similarly

the estimate for the density of negative instances is given by (|k−|)/n
V

, where k− is the

set of instances from negative bags in the region R, |k−| is the number of negative

instances in the region R.

Putting them together, (|k+|)/n
V
− (|k−|)/n

V
is a measure that, will be high if the

number of positives exceed the number of negatives in that region, will be low if the

number of negatives exceed the number of positives in that region, and will be 0 if the

number of positives equal the number of negatives within that region. Alternatively,

29



if one considers a (rectangular) Parzen window,

φ(u) =


1, |uj| ≤ h where, j = 1, 2, ...d,

0, otherwise

(2.2)

the aforementioned measure can also be formulated as,

fparzen(x) =
1

n

|k+n |∑
i=1

1

V
φ(
x− k+i
h

)− 1

n

|k−n |∑
i=1

1

V
φ(
x− k−i
h

) (2.3)

where, x is any location on the feature space and k+i and k−i are instances from positive

and negative bags within that region respectively. Such a parsing of the MIL feature

space of figure 2.2 is shown in figure 2.3. The properties of the function fParzen(x)

hold similar to that of DD and can be easily observed in figure 2.3. The choice of

the size of the region (analogous to the selection of the variance for the Gaussian

in the DD formulation) and the Parzen window functions are in line with that of a

traditional Parzen window: if the size becomes too large, the measure will not have

sufficient resolution. Picking a proper region-size would be a practical difficulty.

Instead of considering a region R of fixed size, let’s limit to a fixed number of

neighbours k. In this set-up, we start with a region of zero volume from x and

grow two regions, one for positive instances and one for negative instances, until

we just enclose for each of the regions, k points respectively. This enables us to

have different sized regions for positive and negative estimates respectively. In fact,

a direct application of nearest-neighbour voting technique will not work on a MIL

space as was pointed out by Wang et. al, but the idea of nearest neighbour can

still be modified and used to suit the MIL needs Wang and Zucker (2000). The vote

contributions of positive and negative neighbours enclosed by the two regions are

their respective kernelized distances to the point x, instead of a uniform majority

30



Figure 2.4: A region of a typical 2D MIL feature space and its parse using the k -NN
measure. Red represents positive and blue represents negative. c© 2015 IEEE.

vote. This aggregated vote can be formulated as,

fkNN(x) =

|k−|∑
i=1

Ψ(||x− k−i ||)−
|k+|∑
i=1

Ψ(||x− k+i ||) such that, |k+| = |k−| = k. (2.4)

where, Ψ(.) is a monotonically increasing sub-modular function, k is the number of

neighbours considered, and k+ and k− are now the set of k instances from positive

and negative bags that are the nearest to x respectively. Ψ(.) is used as a way to

scale distances when the featurespace is arbitrarily large. It can be considered as

normalization. For all our experiments, it is typical to use Ψ(x) = x.

The advantage of fixing the number of neighbours is that in a region where there

are no points or very few number of points, we will get a block of uniform measure

and in a region where there is a high density of points, we will get a smoothly varying

measure. Such a measure is shown in figure 2.4. The impact of the number of

neighbours k is similar to that of the size of the region R in the Parzen window idea.

If k is too small, the measure is going to give information about a very small local

region and is thereby unreliable. If k is too large , the impact of proximity is going

to be averaged out.

31



2.3.1 Learning Under This Formulation

Learning under this formulation is a straight forward threshold learning and this

is done by maximizing the validation accuracy. An instance-level classifier using this

measure can be constructed as,

h(x) = 1{fkNN(x) ≥ T} (2.5)

This is an indicator function that outputs 1 if the measure is above a threshold T and

0 if the measure is below the threshold T . We can use this instance-level classifier to

construct a bag-level classifier.

b(X) = 1{
m∑
i=1

h(xi) ≥ a}∀x1, x2, . . . , xm ∈ X. (2.6)

This is an indicator function that classifies the bag 1 if it has at least a instances

classified as positive and 0 other-wise. Typically in most MIL settings a = 1, although

this need not be the case generally. The aim of this non-parametric empirical risk

minimization formulation is to minimize the training error,

ˆε(b) =
1

n

n∑
i=1

1{b(X(i)) 6= Y (i)}, ∀(X, Y ) ∈ D. (2.7)

by estimating T̂ that best minimizes ˆε(b) as,

T̂ = arg min
T

ˆε(b) (2.8)

Once the threshold is learnt, classification is performed directly by using the bag-

level classifier in equation 2.6 with the learnt threshold. Note that in MIL, it is not

required, although possible in this case, to label each instance in the bag. The labeling

of instances can be as follows:

y(x) = h(x)|T=T̂ (2.9)

32



This process equivalent to maximizing the equation 2.15 (or 2.3) for all points

of feature space and considering the local maximas as instance prototypes, as was

described by Chen et. al, for the DD formulation Chen and Wang (2004). This now

enables comparison to prototyping-based methods. Such a formulation can now be

re-written as,

x̂ = arg max
x

[ |k−|∑
i=1

Ψ(||x−k−i ||)−
|k+|∑
i=1

Ψ(||x−k+i ||)

]
, such that,|k+| = |k−| = k. (2.10)

where x̂ is a prototype positive instance. One advantage of using equation 2.10 is that

once the prototypes are found, we neither need the entire dataset anymore nor do

we need to calculate distances to all the points in the dataset. The prototypes easily

divide the featurespace into probabilistic Voronoi tessellations such as in figure 2.4, or

we could estimate a radius around every prototype to isolate hyper-spherical regions

that are positive. We solve this optimization problem by using an idea similar to the

one used in Chen and Wang (2004).

We start a local gradient ascent from every instance from every positive bag in

the training dataset and find a local maxima. Since such maximas can only ever end

in a high density region of true positive instances from positive bags and since we

start each gradient ascent from every instance in every positive bag, each ascent is

computationally tractable in small number of iterations. Indeed, often few well-chosen

instances from positive bags make this convergence faster and such techniques can be

found for maximizing the DD. Similar techniques can be applied here as well. All the

local maximas are sorted (after non-maximal suppression) and top N are considered

as instance prototypes. It is to be noted that for the dataset shown in figure 2.2,

while the top 5 maximas were enough to find all four prototypes for our approach, it

takes top 24 maximas for DD to find the four prototypes.

Since the number of positive instances in a bag is usually arbitrarily low as com-

33



pared to total number of points on the feature space, this is generally not too many

iterations and is computationally tractable.

The k for k-NN is picked here by a typical elbow method. Once local maximas

(instance prototypes) are found we can again maximize a validation accuracy jointly

for all instance prototypes to find a threshold of classification for each prototype

in terms of the distance to the prototype, hence creating a hyper-spherical decision

regions around each prototype. Thus the decision boundaries of this method creates

a tessellation of the feature space. The tessellation is a set of hyper-spherical regions

around a positive prototype with varying radii.

2.4 Experiments and Results

In this section, details of the experiments will be provided along with the results

from those experiments. We evaluated the method using three standard MIL datasets:

the musk dataset, Andrew’s datasets, the Corel datasets (both 1k and 2k), and our

own dataset: the DR dataset. For all the results shown on all the datasets, we used the

most common implementation methodologies, including data splits, cross validations

and average over runs that were found in literature. This enabled us to compare

against results that were published in the same. When results were not available or

when the protocol doesn’t match, we evaluated the results using the codes from CMU

MIL toolbox 1 . In case of MILES, the results were obtained by using the author’s

original code 2 . The results provided were obtained for best parameter settings using

grid search.

1CMU MIL toolbox: http://www.cs.cmu.edu/~juny/MILL

2MILES homepage: http://www.cs.olemiss.edu/~ychen/MILES.html

34

http://www.cs.cmu.edu/~juny/MILL
http://www.cs.olemiss.edu/~ychen/MILES.html


2.4.1 Musk Dataset

An popular evaluation dataset in the MIL literature is the musk dataset. The musk

dataset is well-described in Dietterich et al. (1997). Musk dataset is a benchmark

feature space used to predict drug activity. MUSK 1 contains 92 molecules with 47

musk and 45 non-musk molecules. MUSK 2 contains 102 molecules with 39 musk

and 63 non-musk molecules. Each bag contains variable number of instances with

166 dimensional features and binary labels. We use the standard implementation

specifications that is used in the original APR paper and other published literature:

ten-fold crossvalidation over the entire dataset, since its easier to compare against a

plethora of methods Dietterich et al. (1997). Table 2.1 compares the performance of

various algorithms against the proposed method. It can be seen that the proposed

method is best in MUSK 1 and among the high performing methods in MUSK 2.

MUSK datasets are uni-concept datasets. For instance, in MUSK 1, among a total

of 476 unique instances each with feature values ranging from -348 degrees to 336

degrees, there are only 633 unique feature values. In such a heavily quantized feature

space that is 166 dimensional, detecting one potential instance prototype is easier for

density based algorithms. Our method while being the best in the MUSK 1 data, is

also among the better in the MUSK 2 data.

2.4.2 Andrew’s Datasets

Andrews et. al, in their mi -SVM paper proposed the use of three classification

datasets, elephant, fox and tiger, for the use of evaluating multiple-instance learning

Andrews et al. (2002). These are now popular benchmark datasets in the MIL lit-

erature. We also test the algorithm on these datasets using the same specifications

mentioned on the said article. Each dataset has 200 images with 100 positive and

35



Methods MUSK 1 MUSK 2

DD Maron and Lozano-Pérez (1998) 88.9% 82.5%

EM-DD Zhang and Goldman (2001) 84.8% 84.9%

citation ( k)-NN Wang and Zucker (2000) 92.4% 86.3%

mi-SVM Andrews et al. (2002) 87.4% 83.6%

MI-SVM Andrews et al. (2002) 77.9% 84.3%

DD-SVM Chen and Wang (2004) 85.8% 91.3%

MILES Chen et al. (2006) 86.3% 87.7%

MIforest Wang et al. (2012c) 85% 82%

MILIS Fu et al. (2011) 88.6% 91.1%

ISD Wang et al. (2011b) 85.3% 79.0%

ALP-SVM Antić and Ommer (2013) 87.9% 86.6%

MIC-Bundle Bergeron et al. (2012) 84% 85.2%

Ensemble Li et al. (2013) 89.22% 85.04%

Proposed 92.4% 86.4%

Table 2.1: Performance of Various MIL Algorithms On the Musk Dataset. c© 2015
IEEE.

100 negative images. The number of instances in each category are 1391, 1320 and

1220 respectively with varying number of instances per bag. Each instance is a 230

dimensional feature vector. We train on a 2/3 random split of the data and test on

the remaining 1/3 of the unseen data. The results are maximized over 15 runs of

validation and The results are shown in table 2.2. Our result while being the best in

the Elephant and Fox classes is almost as good as the best in the Tiger class. It is to

be noted that we are significantly higher in the Fox class which is widely considered

to be a notoriously noisy dataset for MIL ergo a strong indicator of the proposed

36



Methods Elephant Fox Tiger

citation k -NN Wang and Zucker (2000) 79.2% 62.5% 82.6%

mi-SVM Andrews et al. (2002) 79.7% 62.9% 79%

MILES Chen et al. (2006) 70% 56% 62%

MIforest Wang et al. (2012c) 84% 64% 82%

ISD Wang et al. (2011b) 77.9% 63% 85.3%

ALP-SVM Antić and Ommer (2013) 84% 69% 86%

MIC-Bundle Bergeron et al. (2012) 80.5% 58.3% 79.11%

Ensemble Li et al. (2013) 84.25% 63.05% 79.30%

Proposed 86% 73.94% 85.7%

Table 2.2: Performance of Various MIL Algorithms on Andrew’s Dataset. c©2015
IEEE.

method’s adaptability.

2.4.3 Corel Dataset

Corel is another well known, image categorization dataset for MIL benchmarking.

The Corel-2k dataset consists of 2000 images. There are 20 classes and each class

consists of 100 images. The Corel-1k dataset is a subset of this dataset with the first

10 difficult categories. Table 2.3 shows the performance of the proposed approach in

the corel dataset. It is to be noted that we are producing the best results in the Corel

dataset. Training-testing data is again a 2/3− 1/3 split.

2.4.4 A DR Dataset

As was briefly discussed in section 2.1, DR image classification is an application es-

pecially suitable for MIL. In practice, the difficulty in this problem arises from the fact

37



Methods Corel-1k Corel-2k

mi-SVM Andrews et al. (2002) 76.4% 53.7%

MI-SVM Andrews et al. (2002) 75.1% 55.1%

MILES Chen et al. (2006) 82.3% 68.7%

DD-SVM Chen and Wang (2004) 81.5% 67.5%

MILIS Fu et al. (2011) 83.8% 70.1%

Proposed 87.3% 71.9%

Table 2.3: Performance of Various MIL Algorithms on Corel Dataset. c©2015 IEEE.

that the physical and observable difference between a normal eye and a pathological

eye can be very small, localizing to regions with slightly different characteristics. This

can be seen in figure 2.1. A variety of classification and retrieval schemes have been

tried on DR images. Structural Analysis of the Retina (STARE) is one of the earliest

attempts to solve the DR conundrum McCormick and Goldbaum (1975) Goldbaum

et al. (1989). STARE performs automated diagnosis and comparison of images to

search for images similar in content. Recently other learning approaches were devel-

oped to identify relevant patterns using local relevance scores Quellec et al. (2012b).

Application of MIL approaches to DR is gaining interest in recent years Quellec et al.

(2012a). In this study, we consider the auto color correlogram (AuoCC) as a color

feature, which is well-studied in the medical imaging literature Huang et al. (1997).

A modified and quantized 64-bin AutoCC feature is extracted for each instance in

an image. We neglect the black regions and sample 48 non-overlapping instances

from every image. We use a high-quality color fundus image database of 425 im-

ages comprising 160 normal images, and 265 affected images to test the algorithm

on. This dataset was constructed from publicly available databases including Dia-

bRetDB0 et al. (2005), DiabRetDB1 Kauppi et al. (2007), STARE McCormick and

38



Goldbaum (1975) and Messidor 3 and has been used in some existing studies Chan-

dakkar et al. (2013a) Venkatesan et al. (2012a). The balance of the database is more

towards the positive bags and this makes it more challenging for a MIL algorithm.

The results were all evaluated using a 2/3− 1/3 train-test split.

Prototyping DR Instances

In the prototyping sense, each prototype of positive instances should roughly cor-

respond to one type of lesion. As we use color features this is easily possible. We

estimated a total of about 35 different types of lesion prototypes using the algorithm

and verified it with EM-DD’s prototypes. EM-DD had its maximum accuracy at

about 40 prototypes. It is reasonable to assume from this information that there is

somewhere between 35-40 different positive prototypes, each of which in the feature

space might correspond to a unique lesion type or character. In this feature space,

the negative instances are of three types: normal skin, nerves and the optical disk.

This is a reasonably noisy datasets and often has only one or two instances among

48 instances that are positive in a positive bag. Though the distribution of the optic

disk might be noisy, and the number of true positive instances are very low, the pro-

posed algorithm has the potential to adjust to it. Table 2.4 shows the results of the

proposed approach on the DR dataset, where the proposed method stands best.

2.4.5 Sensitivity to Labeling Error

Although not an implicit feature of the proposal, we perform the experiments to

demonstrate the proposed method’s sensitivity to labeling error, exactly similar to

the one described in Chen et al. (2006). We deliberately flip the labels for a range

of percentages of labels randomly on our training split and test the trained model

3Kindly provided to us by the messidor program partners. Visit http://messidor.crihan.fr

39

http://messidor.crihan.fr


Methods Accuracy

DD Maron and Lozano-Pérez (1998) 61.29%

EM-DD Zhang and Goldman (2001) 73.5%

citation k -NN Wang and Zucker (2000) 78.7%

mi-SVM Andrews et al. (2002) 70.32%

MILES Chen et al. (2006) 71%

Proposed 81.3%

Table 2.4: Performance of various MIL Algorithms on DR Dataset. c©2015 IEEE.

on the original labels in the testing split. The split was 2/3 − 1/3. The accuracies

of the proposed method on various datasets are shown in figure 2.5. After about

20% of labels are corrupted, the proposed method still loses only about 5% accuracy

and only when about one-third of the labels are corrupted, the proposed method loses

about 10% accuracy. The average drop in accuracy for both the proposed method and

MILES are compared in figure 2.6. It is clear that MILES and the proposed algorithm

follow the exact same trend. This trend is clearly indicative that the proposed method

is as good as MILES and is often times better, when it comes to sensitivity to labeling

noise. It is noteworthy that MILES is considered the state-of-the-art benchmark for

sensitivity to labeling error out of all MIL methods published and that was one of its

core contributions.

2.5 A Simple Case Study Describing the Effectiveness of the Proposed Method

In this section we demonstrate by a case-study the strictness of a DD positive

neighbourhood.

Consider two bags B+ and B− being positive and negative labeled respectively.

Consider the instances in the bags as such: B+ = {p, α} and B− = {α, α}; such

40



Figure 2.5: Accuracy vs Percentage of Labels Flipped for the Proposed Method.
Flatter curve is good. c©2015 IEEE.

that α be any instance that is so far away form p so that ||p − α|| = Φ where Φ is

a large constant and e(−||p−α||) = 0. Any instance prototype for a positive instance is

therefore at p.

Diverse density at any point x is defined by fDD(x),

fDD(x) =
n∏
i=1

Pr(x = t|B+
i )

m∏
i=1

Pr(x = t|B−i ) (2.11)

for n positive and m negative bags in the data space. Assuming independence between

instances, and using the noisy-or model, equation 2.11 can be decomposed to:

fDD(x) = [1− (1− Pr(x = t|p))(1− Pr(x = t|α))](1− (Pr(x = t|α))2 (2.12)

DD models the probability Pr(x = t|i) where i be any instance as, e(−||i−x||
2). On the

original data space, equation 2.12 becomes,

fDD(x) = [1− (1− e(−||p−x||))(1− e(−||α−x||))](1− e(−||α−x||))2 (2.13)

41



Figure 2.6: Drop in accuracy at various noise levels for proposed and MILES on the
DR dataset. The lower the value the b

This equation can be solved at x = p and at x = α. At x = p equation 2.13 becomes,

fDD(p) = [1− (1− 1)(1− 0)](1− 0)2 = 1. For the case of N positive and M negative

bags with each positive bag containing only one positive instance each, the above

measure will be, fDD(p) = M which is also the same case if there were M instances

in the one negative bag. Note that DD is not a true density measure. Similarly at

x = α, fDD(α) = [1− (1− 0)(1− 1)](1− 1)2 = 0, which is also true for the many bags

situation. Therefore unless M = 0 (no negative bags at all) DD will still be maxima

at positive instance prototype.

Adding one additional negative bag with only one instance (B∗ = {β}) to the

42



Figure 2.7: While the EMDD algorithm fails to capture one of the prototypes(left),
the proposed method does and classifies that region as positive. Tessellation of the
feature space by the proposed method is shown in the right. The accuracy for the
proposed method is 100% while the accuracy of EMDD is 77.4%.

existing database, equation 2.13 becomes,

f ∗DD(x) = [1− (1− e(−||p−x||))(1− e(−||α−x||))]

(1− e(−||α−x||))2(1− e(−||β−x||2)) (2.14)

At x = p, this equation yields,f ∗DD(p) = 1− e(−||β−p||2).

This is a function that is exponentially decreasing in the order of the distance

between β and p. The closer the β is to p, the exponentially lower the function is

going to become and less the difference will be between, f ∗DD(p) and f ∗DD(α) as at

x = α, the equation still remains at f ∗DD(α) = 0. We also find that limβ→p f
∗
DD(p) = 0

thus nullifying the prototype as f ∗DD(α) is also 0. Although in the strict definition of

MIL, such a point is not to be considered a MIL prototype, the belligerent instance

could have been noisy. This is truly the case in figure 2.7 for instance, where due

to the presence of a large cluster of negative points next to a positive cluster which

contains just one negative point, EMDD cannot identify the positive cluster at all 4 .

4We use EMDD to maximize the DD for instance prototypes in this case.

43



The proposed MIL formulation on the other hand, learns by threshold learning a

function that can also be applied for similar analysis purpose at any point x and can

be defined by fkNN(x) as

fkNN(x) =

|k−|∑
i=1

Ψ(||x− k−i ||)−
|k+|∑
i=1

Ψ(||x− k+i ||)

such that, |k+| = |k−| = k. (2.15)

For the two bag case with k = 1, and for Ψ(a) = a the equation becomes, fkNN(x) =

||x − α|| − ||x − p||. This equation can be solved at x = p and at x = α. At x = p,

we get fkNN(p) = ||p − α|| − ||p − p||, = Φ − 0 = Φ, where Φ is the large distance

measured between the positive instance p and the negative instance α. For the case of

N positive and M negative bags with each positive bag containing only one positive

instance each, the above measure will be, fkNN(p) = (2M − N)Φ which is also the

same case if there were M instances in the one negative bag. Notice how unlike DD,

where for the case of M negative bags and N negative bags, the value of N didn’t

feature in fDD(p), the formulation is still dependent on N .

Similarly, at x = α, fkNN(α) = ||α− α|| − ||α− p|| = −Φ, a large negative value.

For the case of N positive and M negative bags with each positive bag containing

only 1 positive instance each, the above measure will be, fkNN(p) = −NΦ. Therefore

unless M = 0 (no negative bags at all) the proposed approach will still be maxima

at positive instance prototype.

Introducing the third bag into the dataset, we getfkNN(x) = ||x−α|| − ||x− p||+

||x−β||. At x = p, this yields,fkNN(p) = ||p−α||−||p−p||+||p−β|| = Φ−0+||p−β||.

One can notice here, that as limβ→p fkNN(p) = Φ which is the same as the previous

case without the negative bag. On the other hand,at x = α, the function becomes,

fkNN(α) = 0 − Φ + ||α − β||. As limβ→p fkNN(α) = 0 which is still Φ, a large value,

away from the prototype. Thereby the prototype is still not nullified unlike in the

44



case of DD.

2.6 Analogical Difference Between DD and the Proposed Formulation.

It is easy to wonder if the proposed formulation is the non-parametric analogy

to DD and thus be decomposable from one to another. In this section we attempt

to show the fundamental analogical differences between the two formulations and

thereby elucidate the philosophical differences between the two.

Consider DD,

fDD(x) =
n∏
i=1

Pr(x = t|B+
i )

m∏
j=1

Pr(x = t|B−j ) (2.16)

where n is the number of positive bags in the dataset and m is the number of

negative bags in the dataset. Taking log we get,

flDD(x) = log

[
n∏
i=1

Pr(x = t|B+
i )

m∏
j=1

Pr(x = t|B−j )

]
(2.17)

=
n∑
i=1

log[Pr(x = t|B+
i )] +

m∑
j=1

log[Pr(x = t|B−j )] (2.18)

by making an independence (iid) assumption for all the instances in each bag (as

is done all through the MIL literature and first introduced in DD itself Maron and

Lozano-Pérez (1998))

=
n∑
i=1

log[

|B+
i |∏

k=1

Pr(x = t|b+i,k)] +
m∑
j=1

log[

|B−i |∏
l=1

Pr(x = t|b−j,l)] (2.19)

=
n∑
i=1

|B+
i |∑

k=1

log[Pr(x = t|b+i,k)] +
m∑
j=1

|B−i |∑
l=1

log[Pr(x = t|b−j,l)] (2.20)

where an instance b
+/−
i,j is the jth instance from the ith bag and the +/− represents

the bag being positive or negative and |B+
r | and |B−r | represents the cardinality of the

45



rth positive and negative bags respectively. Making the substitution Pr(x = t|a) =

exp(Ψ(||x − a||)) in the above equation for any instance represented here by a, we

get,

flDD(x) =
n∑
i=1

|B+
i |∑

k=1

Ψ(||x− b+i,k||) +
m∑
j=1

|B−i |∑
l=1

Ψ(||x− b−j,l||) (2.21)

This equation sums up all the values of all the instances in all the bags, both

positive and negative and weights them exponentially. In essence this equation is

the energy distribution of all instances positive and negative with respect to x. This

equation cannot decompose into equation 2.15, where negative instances are weighted

additively and positive instances are weighted subtractively so as to find regions that

are closer to positive instances and farther away from negative instances. The essence

of the proposed method is to get away from the DD formulation using bags and to get

into the instance space and perform a NN-like instance space tessellation and therein

lies the analogical difference between the proposed method and DD.

2.7 Computational Complexity

From the above discussion on decomposing DD into sums, one can observe that

computationally, to estimate functional value at each x (abstracting out the procedure

of optimization), the DD form takes O(no + mq) where o is the expected value of

number of instances present in a positive bag and q is the expected value of number

of instances present in a negative bag. For the k-NN method that complexity is only

O(2k), where k << n and k << m.

Since estimating time taken for training and testing depends on coding methodolo-

gies, choice of optimization solvers, the authors couldn’t provide timing information.

Considering the fact that the proposed method always achieves better accuracy with

46



0 20 40 60 80
50

55

60

65

70

75

80

85

90

95

100

Number of neighbors

A
c
c
u
r
a
c
y

 

 

Testing Accuracy
Training Accuracy

Figure 2.8: Accuracy vs k. It can be noted that accuracy stabilizes.

comparatively lesser number of prototypes than EMDD, just the fact that one has

to deal with less number of prototypes also significantly increases the speed during

both testing and training time. It is also noteworthy that once after training, we find

the prototypes and the radii associated with them, we no longer need to calculate a

points’ distances using equation 4 all the time, we could simply use the threshold. In

this case we only require the prototypes.

2.8 Sensitivity to k

The number of neighbors k doesn’t have as strong an influence on generalization

unless the number is too less or too high. The accuracy usually plateaus in a large

range of k. All discussions that have been made on choosing a good k for traditional

47



kNN also apply to this formulation as well. We use the ”elbow method” to fix a k

manually, as mentioned in the paper. We performed an experiment on the MUSK2

dataset by varying k over a large range and plotted the accuracy vs k. The plot is

shown in figure 2.8.

A rule of thumb for picking k is the intuition that you need as many members

as half the noisy instances you want to allow around a positive prototype. In this

intuition, one may think of choosing k analogous to choosing slack in a support vector

machine.

2.9 Conclusion

In this section, it was postulate whether lazy learning ideas can be carried over

from traditional non-parametric methods for supervised learning to a MIL setup. The

proposal was a simple, yet novel usage of non-parametric learning philosophy to the

MIL problem. In particular, the analysis focused on the MIL feature space using a

k - NN philosophy and proposed a new formulation based on distances to k-nearest

neighbours. The new formulation was compared and contrasted with the widely used

DD formulation. The proposed approach was tested on the musk datasets, Andrews

dataset and the corel datasets, and was found to be effective. The algorithm was used

to solve the DR image classification problem and was found to be the best among other

algorithms. It can therefore be concluded that a non-parametric learning philosophy

to MIL not only makes intuitive sense but can also be quite a powerful tool for most

general cases. The material from this chapter was published at the international

conference on computer vision, 2015 Venkatesan et al. (2015).

48



Chapter 3

NEURAL DATASET GENERALITY

3.1 Introduction

Neural networks, particularly CNNs have broken all records recently in the com-

puter vision research area. The growth of CNNs focused initially on the recognition

of characters. Fukushima and LeCun were the initial pioneers. Independently they

developed CNN based systems, some of which are still being used widely Fukushima

and Wake (1991); LeCun et al. (1989). Large networks are often trained with large

number of data samples to achieve good accuracies Szegedy et al. (2014); Krizhevsky

et al. (2012). Still, scepticism over CNNs among the modern day computer vision

scientists stems from the fact that one does not have a clear understanding of its

inner working. Some studies show that a few (< 1%) nodes are all that are actively

contributing to classification Escorcia et al. (2015). They also suggest that large

networks often overfit, but since the data is too large over-fitting often works as an

advantage Nguyen et al. (2015). While it is reasonable to expect edge detectors and

Gabor-like features in the lower-level filters and more sophisticated concepts at the

higher levels, it is not clear as to why these filters adapt themselves in this manner.

What is fairly clear though is that different datasets result in different sets of filters

that are similar if the datasets are similar. It is only natural to ask, what role does the

data itself play in such filters being learnt and how they compare with filters learnt

from another dataset. Let us take the view that the filters learnt by networks when

trained using a particular dataset represent the detectors for some atomic structure

in the data itself. In which case each layer is a mapping form the previous layer to

49



𝑆

𝐷1𝐷2

𝐷3

𝐷4

𝐷5

Figure 3.1: Thought experiment to describe the dataset generality. S is the space of
all possible atomic structures, D1−D5 are the atomic structures present in respective
datasets. c©2016 IEEE.

the next layer that is constructed using combinations of these atomic structures in

the first layer in order to minimize a cost.

Let us first define atomic structures to be the forms that CNN filters take by virtue

of the entropy of the dataset it is learning on, analogous to dictionary atoms. Complex

datasets have more and varied atomic structures. Consider the following thought

experiment: Let’s assume that all possible atomic structures reside in an universe S.

Suppose we have a set of three datasets D = {D1, D2, D3} and D ∈ S. Consider

the system in figure 3.1. The figure describes the configuration of the elements of

D. One would now recognize that D1 is a more general dataset with respect to D2

50



and D3. It is so because, while D1 contains most of the atomic structures of D2 and

D3, the latter do not contain as many atomic structures of D1. While this analysis

is simplified for one layer, in typical CNNs, co-adaptation plays a major role in the

learning of these atomic structures. Therefore, generality as defined by the overlap

of areas in a layer-wise Venn diagram is impractical to obtain.

We postulate that, the generalization performances of CNNs on one dataset re-

trained on a network initialized by training using another, could be used to derive

generality. We call this process of pre-training as prejudicing. By prejudicing on the

first dataset, we froze and unfroze layers and retrained the networks on the second

dataset. By freezing layers we are making a network more obstinate and we call

this process obstination 1 . The more the layers are frozen, the more obstinate the

feature extractor is, therefore the harder the classifier has to work. If the prejudice

was general enough, the classifier shall still generalize fairly well enough. What this

means is that if the prejudicing dataset is more general than the re-train dataset, the

classifier can generalize better than vice versa. Let us develop, a generality metric

by comparing the gain in performances of networks of various obstination. Using a

generality such as the one proposed, it becomes clearer as to what kind of datasets

are to be used to prejudice CNNs with during transfer learning. We even discovered

that samples with particular labels within a dataset alone are general enough. So, if

we begin by prejudicing the network on only those and then moved on to the rest of

the labels, we were able to learn the rest of the dataset with considerably less training

samples while achieving comparable generalization performances.

Off-the-shelf networks such as VGG, overfeat and various published Caffe model

weights are trained on large scale image datasets such as Imagenet or PASCAL Si-

1Obstinate layer or freezing implies that the weights were not changed during backprop. The
layer remains prejudiced.

51



monyan and Zisserman (2014b); Jia et al. (2014); Girshick et al. (2014); Russakovsky

et al. (2015); Everingham et al. (2010). For instance, while these may work on appli-

cations such as human pose recognition or vehicle detection, they do not necessarily

work on tasks involving medical images. This is because the datasets on which they

are trained are not general enough to adapt to the representational requirements of

medical images, which is on a manifold unique and disjoint form the manifolds of nat-

ural images. This is visualized in D4 and D5 from figure 3.1. Even a large collection

of natural images is not general enough to have networks trained that are suitable to

medical images. In these cases, the prejudiced network often fails. For instance, on

the Colonoscopy dataset discussed later a 22 layer deep overfeat features, trained with

a logistic regression performs poorer than a 3 layer deep CNN trained from random

initialization, which is in turn outperformed when initialized by a network trained on

an endoscopy dataset.

In this section we considered popular offline character recognition datasets and

arrived at some interesting analysis and generalities. We also show that within

the MNIST dataset, classes [4, 5, 8] are general enough that we could learn the

other classes with very few (even just one) samples, when prejudiced with networks

trained on [4, 5, 8]. We also considered more sophisticated datasets such as Cifar 10

and Caltech 101 against some medical image datasets for colonoscopy video qual-

ity Krizhevsky and Hinton (2009). This study led us to two major research insights:

1. If one has very few data to learn from, which other dataset is better to prejudice

the network with? The answer is particularly helpful when dealing with medical

image datasets where data is very scarce and one can’t simply use a network

trained on VOC datasets as feature extractors as discussed above.

2. Among the various classes during the training procedure, if we prejudice with a

52



certain general set of classes first and then move on to others later, generaliza-

tion to all classes, even for those with few samples is better. This is particularly

significant if the dataset has a lot of samples in certain classes and not as much

of others.

The rest of the paper is organized as follows: section 3.2 discusses related works,

section 3.3 presents the design of our experiments, section 3.4 shows some results on

the core-experiment and section 3.5 provides concluding remarks.

3.2 Related Work

One related work that this article shares with is the work by Yosinski et al Yosinski

et al. (2014). In that article, the authors considered two tasks A and B that were es-

sentially 500 classes each from the Imagenet dataset Russakovsky et al. (2015). They

trained an 8 layer network on one of the tasks (say A). They then initialized a new

network carrying over the first n layers from the previous job while randomly initial-

izing the others. This new network was used to retrain task B. Such a network was

AnB+. They experimented by obstination of the carried over layers. Such a network

was AnB. They also studied the specificity of each layer and their contributions to

the overall performance. They also showed that networks working on similar tasks

had a high memorability and that co-adaptation of layers increased the generalization

performance.

While this analysis is interesting, it was performed on only one dataset: Imagenet.

By design, the networks were forced to learn very general filters, so as to be best trans-

ferable. Since the images were all natural images, one would expect the layers to be

more Gabor-like at earlier layers and have more label specific features at later layers,

which was what was observed. Also, the paper analysed the transferability of the

feature extractors from the perspective of the networks in terms of their fall in gen-

53



eralization performance. This analysis was not catered to the dataset’s perspective,

which is that the filters learned are a property of the dataset being trained on. This

was not a problem for the authors as their datasets for tasks A and B occupied similar

manifolds. This analysis also didn’t explore re-training using the same network but

rather went with re-initializing so that they could learn new co-adaptations. This is

not interesting to the study of generality as we want to observe the effect of filters

transferred from one dataset on another. The more general a dataset, the more vari-

ety of atomic structures it offers to the network to learn. We used this idea to define

a generality metric between two datasets. To do so, we cannot follow the techniques

used by Yosinski et al.

Another closely related work is the work on dark knowledge by Hinton et al, Hin-

ton et al. (2015). Here the authors suggest that among the various classes in a dataset,

there exists some amount of generalization knowledge that could be transferred. The

authors construct a large network that learns all its classes. They then go on to train

a smaller network with the same dataset (or with a dataset that is missing some of

the classes altogether). While training this smaller network though, instead of using

the the hard labels, they also use the softmax output from the large network also for

backprop. This creates an effect of the larger network guiding the smaller network

to not just generalize to the dataset, but also to generalize to unseen classes. This

is because, as the argument goes, ”the network learns the relationship between the

classes” and ”all the knowledge is among the relative probabilities or softmaxes that

the network is almost certain is wrong” Hinton et al. (2015).

Although the author retrains an entire network that is randomly initialized using

the softmax outputs from a trained network and uses this as prejudice, no informa-

tion is actually being transferred in terms of actual filters. Ergo, this work, while

interesting, also doesn’t help in understanding generality of the data itself in a more

54



0

1

9

0

1

9

0

1

9

0

1

9

Figure 3.2: Protocol of obstination: From left to right, all layers frozen, one, two
and three layers unfrozen. Green represent unfrozen and red represent frozen. Note
that the layers are always unfrozen from the end and that the softmax layer is always
unfrozen and randomly initialized. This should be generalized similarly for more than
three layers also. c©2015 IEEE.

direct manner. Some of the claims made by this article though were indirectly and

independently verified by us through our generality results. The basic claim of their

work is that among only a handful of classes, there is enough knowledge to general-

ize to other classes. Unless there exists some generality between classes, training on

particular classes will not have been representational enough for the other classes to

learn on. We directly verify this by showing that some classes alone have a high gen-

eralization to the rest of the dataset and make a similar conclusion from an entirely

independent direction of research.

3.3 Design of Experiments

Consider figure 3.3. Among the various datasets shown, it is natural to expect

any network trained on MNIST to contain simpler filters than MNIST-rotated. This

is because, while MNIST-rotated contains many structures from MNIST, due to the

rotations, MNIST-rotated will contain additional structures that require the learning

of more complicated filters. A network trained on MNIST-rotated on its first layers

will be expected to additionally have filters for detecting sophisticated oriented edges

than for MNIST. This would mean that prejudicing a network with MNIST to then re-

train MNIST-rotated is much less helpful than vice versa. A network prejudiced with

a general enough dataset is better to be retrained for it generalizes easily. A prejudice

55



must come from a more general dataset if a prejudice transfers positive knowledge

as shown in their generalization performances. We use this simple intuition to argue

that MNIST-rotated is a more general dataset with respect to MNIST.

Our basic experiment is conducted between pairs of datasets Di and Dj. Firstly,

we train (prejudice) a randomly initialized network with dataset Di. We call this

network n(Di|r) or the base network (r implies random initialization). We then pro-

ceed to retrain n(Di|r) as per any of the setup shown in figure 3.2. nk(Dj|Di) would

imply that there are k degrees of freedom, or to be precise, k layers of filters that are

allowed to learn by dataset Dj that is prejudiced by the filters of n(Di|r). nk(Dj|Di)

has N − k obstinate layers that carries the prejudice of dataset Di, where N is the

total number of layers. Note that more degrees of freedom implies that the network

is less obstinate to learn. Also note that these layers can be both convolutional or

fully connected neural layers. Any idea expressed here can be extended to any type

of parametrized layers. In fact while we perform operations such as batch normal-

izations, we even freeze and unfreeze the α and β of batch norm Ioffe and Szegedy

(2015). Obstination also includes the bias parameters. Layers learn in two facets.

They learn some components that are purely their own and some that are co-adapted

from previous layers that are allowed to learn as well. By freezing some layers we are

making those layers a fixed functional transformation. Note that the performance

gain from nk(Dj|Di) and nk+1(Dj|Di) is not because of just the new layer k+ 1 being

allowed to learn, but of the combination of all k+1 layers allowed to learn. Figure 3.2

shows the setup of our experiments and explains degrees of freedom. These are our

obstination protocols. Notice that in all the various setup, the softmax layer remains

non-obstinate. In fact the softmax layer is always randomly re-initialized because not

all dataset pairs have the same number of labels. Also notice that the unfreezing of

layers happen from the rear. We cannot unfreeze a layer that feeds into a frozen layer.

56



This is because, while the unfrozen layer learns a new filter and therefore represents

the image on new distributed domains, the latter layer is not adapting to such a

transformation. When there are two layers unfrozen, the two layers should be able

to co-adapt together and must finally feed into an unfrozen classifier layer.

3.3.1 Dataset Generality

Suppose the generalization performance of n(Dj|r) is Ψ(Dj|r) and the generaliza-

tion performance of nk(Dj|Di) is Ψk(Dj|Di). First order dataset generality or simply

dataset generality of Di with respect to Dj at the layer k is given by,

gk(Di, Dj) =
Ψk(Dj|Di)

Ψ(Dj|r)
(3.1)

This indicates the level of performance that is achieved by Dj using N − k layers

worth of prejudice from Di and k layers worth of features from Di combined with k

layers of novel knowledge from Dj together. Note that the generality is calculated for

the base dataset as a measure of how the re-train performs with the prejudice of the

base dataset. gk(Di, Dj) > gk(Di, Dl) indicates that at k layers, Di provides more

general features to Dj than to Dl. Conversely, when initialized by n(Di|r), Dj has

an advantage in learning than Dl.

Note that, gk(Di, Di) ≥ 1 ∀k. gk(Di, Dj) for i 6= j might or might not be greater

than 1. If gk(Di, Dj) ≥ 1 for i 6= j, it indicates that Dj is at least very similar to Di

(such as the case considered by Yosinski et al.) and at most a perfect generalizer of

Di Yosinski et al. (2014).

3.3.2 Class Generality

Di and Dj need not be entire datasets but can also be just disjoint class instances

of the same dataset that is split in two. These generalities will tell us if particular

57



classes are themselves more general than others. For instance, we divided the MNIST

dataset into two parts. The first part contained the classes [4, 5, 8], the rest were

contained by the second part 2 . We performed the generality experiments with

MNIST[4, 5, 8] as base, which was trained over a random initialization. We re-trained

this prejudiced network using the second part with the same experiment design as

above. We defined class generality as the generality, of a class or a set of classes,

retrained on the prejudice of the other mutually exclusive classes.

We repeated this experiment several times with decreasing number of training

samples per-class in the retrain dataset of MNIST [0, 1, 2, 3, 6, 7, 9]. All the while, the

testing set remained the same size. This implies that the prejudiced network retrains

on a much smaller dataset and tests on a much larger dataset. The re-train dataset

had 7 classes. We created seven such datasets with 7p, p ∈ [1, 3, 5, 10, 20, 30, 50] sam-

ples each. We now define sub-class generality as the generality of these sub-sampled

datasets (in each class we only consider a small random sample), retrained on the

base of other mutually exclusive classes (MNIST[4, 5, 8]). . Initializing a network

that was trained on only a small sub-set of well-chosen classes can significantly im-

prove generalization performance on all classes, even if trained with arbitrarily few

samples, even at the extreme case of one-shot learning.

3.3.3 Datasets Used

We designed these experiments across three board categories of datasets: 1. Char-

acter datasets that included MNIST LeCun et al. (1998a), MNIST-rotated Larochelle

et al. (2007), MNIST-random-background Larochelle et al. (2007), MNIST-rotated-

background Larochelle et al. (2007), Google street view house numbers Netzer et al.

2We chose this combination of classes strategically after trail and error as these are the most
general among the classes and exaggerate the effect.

58



(2011), Char 74k English de Campos et al. (2009) and Char 74k Kannada de Cam-

pos et al. (2009) 2. Natural image datasets that includes Cifar 10 and Caltech

101 Krizhevsky and Hinton (2009); Fei-Fei et al. (2007) and 3. Natural images against

medical images that included in addition to Caltech 101 a Colonoscopy video qualitty

dataset. We leave it to the reader to find for themselves details about the datasets

from the original articles. Although we chose only a handful of datasets, the intention

of this article was only to show that such generality measures could be made. The

scope of this article was not to benchmark various publicly available popular datasets.

Neither was it to make suggestions specific to types of datasets.

3.3.4 Network Architecture and Learning

We used one standard network architecture for all character datasets and exper-

iments, one for Cifar 10 vs. Caltech 101 and another standard for Caltech 101 vs.

Colonoscopy.

The network architectures, learning rates and other details are provided below.

The experiments were conducted on a Macbook Pro Laptop using an Nvidia GT

750M GPU, for character datasets and on an Nvidia Tesla K40 GPU for the others,

with cuDNN v3 and Nvidia CUDA v7.

No pre-processing were done on the images themselves except for cropping, re-

sizing, normalizing. The images were all normalized to lie in [0, 1]. The character

recognition datasets were all of a constant 28X28 grayscale, the Caltech 101 vs. Cifar

10 experiments were performed ar 32X32, RGB and the Caltech 101 vs. Colonsoscopy

were at 128X128, RGB. It is to be noted that the aim of the authors was not to set

up the networks to achieve state-of-the-art. The authors did although try to achieve

satisfactory performances on all base datasets involved before proceeding with the

experimentation.

59

https://developer.nvidia.com/cudnn
http://www.nvidia.com/object/cuda_home_new.html


Character Datasets

Our networks had three convolutional layers with 20, 20 and 50 kernels respectively.

All the filters were 5 X 5 and were all stride 1 convolutions. The first layer didn’t have

any pooling. The second and the third layer maxpool by 2 subsampled. All the layers

used rectified linear units (ReLU) activations Nair and Hinton (2010). The classifier

layer was a softmax layer and we didn’t use any fully connected layers. We used a

dropout of 0.5 only from the last convolutional layer to the softmax layer Srivastava

et al. (2014). We optimized a categorical cross-entropy loss using an rmsprop gradient

descent algorithm Dauphin et al. (2015). For acceleration we used Polyak Momentum

that linearly increases in range [0.5, 1] from start to 100 epochs Polyak (1964). Unless

early terminated, we ran 200 epochs. We also used a constant L1 and L2 regularizer

co-efficients of 0.0001. Our learning rate was a 0.01 with a multiplicative decay of

0.0998.

CIFAR10 vs. Caltech101 and Caltech 101 vs Colonoscopy

For this task, the networks had five convolutional layers with 20, 20, 50, 50 and 50

kernels respectively. We also had a last fully connected layer of 1800 nodes, which

also had a dropout of 0.5. All the filters were 5 X 5 and were all stride 1 convolutions.

Only the last layer maxpool by 2 subsampled. All the layers used rectified linear units

(ReLU) activations Nair and Hinton (2010). All CNN and MLP layers were also

batch normalized Ioffe and Szegedy (2015).The classifier layer was a softmax layer

and we didn’t use any fully connected layers. We used a dropout of 0.5 only from the

last convolutional layer to the softmax layer Srivastava et al. (2014). We optimized a

categorical cross-entropy loss using an rmsprop gradient descent algorithm Dauphin

et al. (2015). For acceleration we used Polyak Momentum that linearly increases in

60



range [0.5, 0.85] from start to 100 epochs Polyak (1964). We use a learning rate of

0.001 for the first 150 epochs and then fine tune with a learning rate of 0.0001 for an

additional 50 epochs unless early-terminated. Our learning decay of was subtractive

0.0005. Figure 3.4 shows more generality curves.

3.4 Results and observations

3.4.1 Character Datasets

Figure 3.4 shows the generalities of MNIST-rotated-bg and Kannada prejudiced by

all other the character datasets. For reference each plot also shows the generalization

performance of a randomly initialized base convolutional network. The following are

some observations of interest:

While no dataset is qualitatively the most general, it is quite clear that MNIST

dataset is the most specific. Rather, MNIST dataset is one that is generalized by

all datasets very highly at all layers. Surprisingly, MNIST dataset actually gives

better accuracy when prejudiced with other datasets, rather than when initialized

with random, if all layers were allowed to learn. This is a strong indicator that all

datasets contain all atomic structures of MNIST.

NIST, Char74-English and Char74-Kannada follow similar generalization trends

with almost all the datasets. With no degrees of freedom they all generalize rather

poorly, but their generalities shoot up once one or many layers of the base networks

are unfrozen. This indicates two properties: Firstly, these three datasets have similar

manifolds. Secondly this also indicates that the last layers of the base datasets are

extracting some particular quality of atomic structures that are present in the these

datasets alone. Similarly, SVHN does not generalize in the first layer to most datasets,

it generalizes much better in the latter layers. This is particularly noticeable in

61



MNIST and Kannada. This further exemplifies the results.

While initially one would have assumed that Kannada would be a general dataset,

we observed the contrary. SVHN, Char74-English and Nist generalizes better to

Kannada than even Kannada itself does. English characters seem to be a more general

set than Kananda. While counter-intuitive, this result is immediately obvious when

one pays close attention to the filers that are learnt and the dataset itself. Kannada is

dominated by predominantly curved edges only, whereas even MNIST has a multitude

of unique atomic structures.

Figure 3.6 demonstrates some interesting phenomenon that we discovered often.

The gain in performance achieved, constantly decreases with increase in degrees of

freedom. Through the epochs, unfreezing only the classifier layer, quickly converges.

But while unfreezing, all layers converge at about the same number of epochs. We

also observe, that MNIST retrained over MNIST-rotated-background, with the last

degree of freedom does not learn antything at all. The error rate is within the sta-

tistical margin of error. This is a testament to the generality of MNIST-rotated-

background among the MNIST datasets. One might expect this because MNIST-

rotated-background contains smooth background images (similar to natural image

set) and MNIST characters that are rotated. These conditions provide for a good

generality.

For the intra-class experiment described in the section 3.3.2 above, table 3.1 shows

the accuracies. From the table one can observe that even with one-sample per class, a

7-way classifier could achieve 22% more accuracy than a randomly initialized network.

It is note worthy that the last row of table 3.1 still has 100 times less data than the

full dataset and it already achieves close to state-of-the-art accuracy even when no

layer is allowed to change. This is a remarkably strong indicator that the classes

[4, 5, 8] generalizes the entire dataset.

62



p base k = 0 k = 1 k = 2 k = 3

1 Random - - - 55.61

MNIST[458] 73.07 73.91 76.37 77.52

3 Random - - - 73.34

MNIST[458] 83.61 87.2 85.7 87.6

5 Random - - - 83.32

MNIST[458] 90.98 92.98 92.6 92.07

10 Random - - - 81.31

MNIST[458] 91.55 93.71 93.82 95.08

20 Random - - - 87.77

MNIST[458] 95.52 95.52 97.07 96.78

30 Random - - - 88.62

MNIST[458] 96.5 97.34 97.35 97.45

50 Random - - - 90.78

MNIST[458] 96.38 97.40 97.71 97.38

Table 3.1: Sub-sample experiment and its generalization accuracies for different
layers of freezing. The re-train network was MNIST[0, 1, 2, 3, 6, 7, 9]. For obvious
reasons random initializations are trained only with all layers unfrozen, hence the
missing values. c©2016 IEEE.

Figure 3.7 mimics the same. We also observed that once initialized with a general

enough subset of classes from within the same dataset, the generalities didn’t vary

among the layers like it did when we initialized with data from outside the mother

dataset. We also observed that the more the data we used, more stable the generalities

remained. Point of take away from this experiment is that if the classes are general

enough, one may now initialize the network with only those classes and then learn

the rest of the dataset even with very small number of samples.

63



3.4.2 CIFAR 10 vs. Caltech 101

From figure 3.4 we observe that Caltech 101 doesn’t generalize to Cifar 10, which

is surprising because Caltech 101 has a lot more classes. One would expect it to be

more general. Its quite the opposite because Caltech 101 although has a lot of classes,

the variability of each class is not as much as the variability in the Cifar 10 dataset.

But it is altogether a serendipitous result that Cifar 10 is more general than Caltech

101 on the lower layers. However after three layers of obstination, we find that when

the generalities crosses 1, the effect nullifies and reverses slightly. Even though the

low-level features are more general in Cifar 10, Caltech 101 generalizes more on higher

layers.

3.4.3 Caltech 101 vs. Colonoscopy

The colonoscopy dataset’s labels identify if a image is deemed to be of a quality

that is good enough so as to make a diagnosis on the pathology of that particular

image. Figure 3.5 show the filters learnt by Caltech 101 base network and Colonoscopy

base network for the exact same architecture from random initialization. Two things

are immediately apparent from the learnt filters that while Caltech 101 learns more

structured and organized shape features, Colonoscopy dataset learns at first sight

what appears to be unstructured blob detectors and detectors for dark colors. These

features still produce state-of-the-art accuracy on the dataset. On observation of the

activations produced after the first layer, and from observations of images and their

labels, one can immediately recognize that what the network is learning is indeed

changes in brightness patterns.

Most often the video quality in colonoscopy is affected because of saturation when

too much light is thrown at a scene. The quality is also affected due to light reflection

64



from bodily fluids that is also noticeable in the activations. As also can be noticed

that most of the filter colors are yellowish or blueish. On an colonoscopy video most

often the video is also labelled poor quality when these colors are present, as these

colors are often present mostly because of scattering and reflections. Having made

these observations one would arrive at the obvious conclusion that neither dataset

generalizes the other. This was indeed the result observed from figure 3.4. Although,

Caltech 101 seem to generalize a bit better for even though it predominantly learns

shapes, it learns some color features also.

3.4.4 Summary of Results

From all these results and observations, we could summarize that one should

prefer to initialize with a general dataset that might have a lot of variability or

rather generality in data, when attempting to train with very few number of samples.

Whenever possible one must initialize the network trained by a general dataset as this

always boosts generalization performance. When there are biased datasets with large

number of samples in some classes and fewer in others, one should train the most

general classes first. Once the network is well-prejudiced one should start introducing

the classes with fewer number of and less general samples, provided the general class

is general enough.

3.5 Conclusions

In this chapter, we used the performance of CNNs on a dataset when initialized

with the filters from other datasets as a tool to measure generality. We proposed

a generality metric using these generalization performances. We used the proposed

metric to compare popular character recognition datasets and found some interesting

patterns and generality assumptions that add to the knowledge-base of these datasets.

65



In particular, we noticed that MNIST data is one of the most specific dataset. We

also found that Char74k Kannada is less general than English datasets. We also

calculated generality on class-level within a dataset and conclude that a few well-

chosen classes used as pre-training could build a network that is well-initialized that

even with 100 times less samples, we could learn the other classes. We also provided

some practical guidelines for a CNN engineer to adopt. After performing similar

experiments on popular imaging datasets and medical datasets, we made similar

serendipitous observations. The material from this chapter was published at the

International Conference on Image Processing, 2016 Venkatesan et al. (2016a) and a

longer version of it was published in arXiv Venkatesan et al. (2016b).

66



Figure 3.3: Samples of some of the datasets that we used in this analysis.
From top to bottom: MNIST LeCun et al. (1998a), MNIST-rotated Larochelle
et al. (2007), MNIST-random-background Larochelle et al. (2007), MNIST-rotated-
background Larochelle et al. (2007), Google street view house numbers Netzer et al.
(2011), Char 74k English de Campos et al. (2009), Char 74k Kannada de Campos
et al. (2009). Last two rows, first five from left are CIFAR 10 and the rest are Cal-
tech101 Krizhevsky and Hinton (2009); Fei-Fei et al. (2007). The bottom row is the
colonoscopy dataset.

67



Number of Layers Unfrozen
0 1 2 3

G
e
n
e
ra

lit
y

0.9

0.92

0.94

0.96

0.98

1

1.02
Retrainedmnist for different bases

mnist
MNIST random background
MNIST
MNIST rotated background
NIST Special Dataset-19
Google Street View House Numbers
Char 74k English
Char 74k Kannada

Number of Layers Unfrozen
0 1 2 3

G
e
n
e
ra

lit
y

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1
Retrainedmnist-rotated-bg for different bases

mnist-rotated-bg
MNIST random background
MNIST
MNIST rotated background
NIST Special Dataset-19
Google Street View House Numbers
Char 74k English
Char 74k Kannada

Number of Layers Unfrozen
0 1 2 3

G
e
n
e
ra

lit
y

0

0.2

0.4

0.6

0.8

1

1.2
Retrainedsvhn for different bases

svhn
MNIST random background
MNIST
MNIST rotated background
NIST Special Dataset-19
Google Street View House Numbers
Char 74k English
Char 74k Kannada

Number of Layers Unfrozen
0 1 2 3

G
e
n
e
ra

lit
y

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Retrainedchar74-english for different bases

char74-english
MNIST random background
MNIST
MNIST rotated background
NIST Special Dataset-19
Google Street View House Numbers
Char 74k English
Char 74k Kannada

Number of Layers Unfrozen
0 1 2 3

G
e
n
e
ra

lit
y

0

0.2

0.4

0.6

0.8

1

1.2
Retrainedchar74-kannada for different bases

char74-kannada
MNIST random background
MNIST
MNIST rotated background
NIST Special Dataset-19
Google Street View House Numbers
Char 74k English
Char 74k Kannada

Number of Layers Unfrozen
0 1 2 3

G
e
n
e
ra

lit
y

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Retrainedchar74-english for different bases

char74-english
MNIST random background
MNIST
MNIST rotated background
NIST Special Dataset-19
Google Street View House Numbers
Char 74k English
Char 74k Kannada

0 1 2 3 4 5 6
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1
Retrained CALTECH101 for different bases

CALTECH101-base 

CALTECH101

CIFAR10

0 1 2 3 4 5 6

G
e

n
e

ra
lit

ie
s

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
Caltech 101 vs. Colonoscopy

caltech 101 on caltech 101
caltech 101 on colonoscopy
colonsoopy on colonoscopy
colonoscopy on caltech101

Figure 3.4: Generalities of datasets not shown in the actual paper. The dark line
represents the accuracy of n(D|r). Please zoom on a computer monitor for closer
inspection. c©2016 IEEE.

68



Figure 3.5: From left to right, separated by a line are filters learnt by a base
Caltech101 base colonoscopy, sample images from the colonoscopy dataset and their
first activation for a filter that detects smooth areas of brightness.

0 20 40 60 80 100 120 140 160 180 200
0

200

400

600

800

1000

1200
Error Curve - Base Network:mnist-rotated-bg ; Retrained onmnist-bg-rand

Base Network -mnist-bg-rand

1-unfrozen

2-unfrozen

3-unfrozen

all-frozen

0 50 100 150 200
50

100

150

200

250

300
Error Curve - Base Network:mnist-rotated-bg ; Retrained onmnist

Base Network -mnist
1-unfrozen
2-unfrozen
3-unfrozen
all-frozen

Figure 3.6: Validation Errors vs Epoch Number for Base-MNIST-rotated-bg Re-
trained on MNIST

69



Figure 3.7: Sub-class Generalities for MNIST [4, 5, 8]

70



Chapter 4

MENTEE NETS

4.1 Introduction

With the proliferation of off-the-shelf, downloadable networks such as VGG-19,

overfeat, R-CNN and several others in the caffe model zoo, it has become common

practice in the computer vision community to simply fine-tune one of these net-

works for any task Simonyan and Zisserman (2014b); Jia et al. (2014); Girshick et al.

(2014). These networks are usually trained on a large dataset such as Imagenet and

Pascal Russakovsky et al. (2015); Everingham et al. (2010). The proponents of these

networks argue that these networks have learnt image representations that are per-

tinent for most datasets that deal with natural images. Under the assumption that

all these datasets are natural images and are derived from a similar distribution this

might as well be true. Even with such networks, features that are unique to each

datasets do matter. While fine-tuning of an already trained network works to a cer-

tain extent, these features are not learnt in a traditional manner on the target dataset

but are simply copied. There is also no guarantee that these features are the best

representations for the target dataset, although there is some validity in expecting

that such a representation might work well, since after all it was learnt from a large

enough dataset.

Most computer vision scientists do not attempt to train a new architecture from

scratch (random initializations). Training even a mid-sized deep network with a

small dataset is a notoriously difficult task. Training a deep network, even those with

mid-level depth require a lot of supervision in order to avoid weight explosion. On

71



most imaging datasets, with image sizes being 224X224, the memory insufficiency

of a typical GPU restricts the mini-batches to less than 100. Using small mini-

batches and small datasets lead to very noisy and untrustworthy gradients. This

leads to weight explosions unless the learning rates are made sufficiently smaller.

With smaller learning rates, learning is slowed down. With smaller mini-batches

learning is unstable. One way to avoid such problems is by using regularization. By

regularizing we can penalize the gradients for trying to make the weights go higher

and higher. Batch Normalization is another technique that is quite commonly used

to keep weight explosion under check Ioffe and Szegedy (2015). Even with these

regularization techniques, the difficulty of training a deep network from scratch leads

most computer vision scientists to use pre-trained networks.

There are also several reasons why one might favour a smaller or a mid-sized

network even though there might be a better solution available using these large

pre-trained networks. Large pre-trained networks are computationally intensive and

often have a depth in excess of 20 layers. The computational requirement of these

networks do not make them easily portable. Most of these networks require state-of-

the-art GPUs to work even in simple feed forward modes. The impracticality of using

pre-trained networks on smaller computational form factors necessitates the need to

learn smaller network architectures. The quandary now is that smaller networks

architectures cannot produce powerful enough representations.

Many methods have been recently proposed to draw additional supervision from

large well-trained networks to regularize a new network while learning from scratch Wang

et al. (2015); Romero et al. (2014); Balan et al. (2015); Chan et al. (2015). All of

these works were inspired from the Dark Knowledge (DK) approach Hinton et al.

(2014). All these techniques use at most one layer of supervision on top of the soft-

max supervision and try to use this technique to learn more deeper networks better.

72



Mentor

Mentee

Figure 4.1: Mentor Mentoring Mentee on the Second Hidden Layer.

Figure 4.1 shows a conceptualization of this idea. In this chapter, we try and make

a shallower mentee network learn the same representation as a larger, well-trained

mentor network at various depths of its network hierarchy. Mentorship happens by

tagging on to the loss of the mentee network, a dissimilarity loss for each layer that we

want mentored. To the best of our knowledge, there hasn’t been any work that has

regularized more than one layer this way. There also hasn’t been any work that has

trained a mid-sized network from a larger and deeper network from scratch. We study

some idiosyncratic properties for some novel configurations of mentee networks. We

argue that such mentoring avoids weight explosion. Even while using smaller mini-

batches, mentee networks get ample supervision and are capable of stable learning

73



even at high learning rates. We show that mentee networks produce a better gener-

alization performance than an independently learnt baseline network. We also show

that mentee networks are better transferable than the independently learnt baselines

and are also a good initializer. We also show that mentee networks can learn good

representations from very little data and sometimes even without supervision from a

dataset in an unsupervised fashion.

The rest of the chapter is organized as follows: section 4.2 discusses related works,

section 4.3 details the mentored learning, section 4.4 discusses designs for experiments,

section 4.5 produces results and section 4.6 provides concluding remarks.

4.2 Related Works

Hinton et al., tried to make networks portable by learning the softmax outputs of

a larger well-trained network along with the label costs Hinton et al. (2014). This was

previously explored using logits by Caruana et al., Ba and Caruana (2014); Bucilu

et al. (2006). By directly learning the softmax layers, they were forcing the softmax

layer of a smaller network to mimic the same mapping as that of a larger network onto

the label space. In a way they tried to learn a better second and third guesses. They

called this dark knowledge, as the knowledge so learnt is only available to the larger

network. By attempting to learn the softmax layer, they were able to transfer or distil

knowledge between the two networks. The drawback of this work is that it only works

as long as the larger network is already well-trained and stable. They relied upon the

network’s predictive softmax layer being learnt perfectly on the target dataset and

propagate that knowledge. This also assumes that there are relationships between

classes to be exploited. While this may work in cases where this is true, such as in

character recognition or in voice recognition, it doesn’t work in most object detection

datasets where the relationship between classes is not a given in terms of its appear-

74



ance features 1 . They also distil only the softmax labels and not the representational

space itself. This also requires that the smaller network is capable of training in a

stable manner. Dark knowledge is extended upon by several previous works Wang

et al. (2015); Romero et al. (2014); Balan et al. (2015); Chan et al. (2015). One

extension of this work that we generalize in this article is using layer-wise knowledge

transfer for one layer in the middle of the network. This was used to show that thinner

and deeper network can be trained with better regularization Romero et al. (2014).

Another method uses a similar one-layer regularizer as knowledge transfer between

a RNN and a CNN Chan et al. (2015). Mentored training has also been shown to

be extremely useful when training LSTMs and RNNs with an independent mentor

supervision Wang et al. (2015). All these methods discussed above are essentially

the same technique as the dark-knowledge method extended beyond just the softmax

layer. All of these methods have fixed one-layer regularizations and although trivial,

we generalize this for many layers. Their mentee networks are typically much deeper

and complex than their mentors and they use these as a means to build more complex

models (albeit thinner as in the case of FitNets Romero et al. (2014)). There has

been no study to the best of our knowledge that builds less complex (both thinner

and shallower) models with the same capability as larger models. Also, neither has

there been a study that studies various properties of these networks nor those that

show the transferability and generality of these networks.

4.3 Generalized Mentored Learning

Let us first generalize all of the methods that use this knowledge transfer as follows:

Consider a large mentor network with n layers Mn. Suppose we represent the kth

neuron activations of the ith layer in the network as Mn(i, k). Consider a smaller

1We tried this approach on Caltech101 and couldn’t get reliable results.

75



mentee network with m 2 layers Sm. Suppose that M is already well-trained and

stable on a general enough dataset D. Now consider that we are using S to learn

classification 3 on a newer dataset d1 which is less general and much smaller than

D as determined a priori. Although this is not a constraint, having a smaller and

less general dataset emphasizes the core need where such mentored learning is most

useful.

∀ l ≤ n and j ≤ m, we can define a probe as an error measure between Mn(l)

and Sm(j). This error can be modelled as an RMSE error as follows,

Ψ(l, j) =

√√√√1

a

a∑
i=0

(Mn(l, i)− Sn(j, i))2, (4.1)

where a is the minimum number of neurons betweenMn(l, .) and S(j, .). If the neu-

rons were convolutional, we consider element-wise errors between filters. By adding

this cost to the label cost of the network S during back propagation, we learn not

just a discriminative enough representation for the samples and labels of d1, but

also for layers j in a pre-determined set of layers, a representation closer to the one

produced by M. Some implementations of such loses in literature tend to learn a

regressor instead of simply adding the loss, but we concluded from our experiments

that the computational requirements of such regressors do not justify their contri-

butions. Adding a regressor would involve embedding the activations of the mentor

and the mentee onto a common space and minimizing the distances between those

embeddings. We quite simply circumvent that and consider the minimum number of

matching neurons. This enables us to have a slimmer, fatter or same sized mentee.

Suppose db1 is the bth mini-batch of data from the dataset d1 and suppose we have a

2Although we adhere strictly to m < n, without losing any generality, we could have any m or
n. In fact m > n with only one probe would be the special case of FitNets Romero et al. (2014).

3Although we only consider the task of classification, the methods proposed are applicable to
many forms of learning.

76



pre-determined set of probes B, which is a set of tuples of layers from (M, S). The

overall network cost is,

e = αtLs(db1) + βt
∑
∀(l,j)∈B

Ψ(l, j) + γtΨ(n,m), (4.2)

where L(.)s is the network loss of that mini-batch, αt and βt weighs the two losses

together to enable balanced training and γt is the weight of the probe between the

two (temperature) softmax layers. αt = gα(t), βt = gβ(t) and γt = gγ(t) are annealing

functions parametrized by the iteration t under progress. Although most methods

in the literature use constants for αt, βt and γt, we found it preferable to retain

gα(t) = 1,∀t throughout and anneal β and γ linearly. We discuss the value and the

need for these parameters in detail further.

Since M is pre-trained and stable, the second and third terms of equation 4.2

are penalties for the activations of those layers in S not resembling the activations

of the probed layer from M respectively. These losses as defined by equation 4.1

are functions of the weights of those layers from S only. They restrict the weights

within a proximity or region, that produces activations that are known for the mentor

to be better activations. This restricting behaviour acts as a guided regularization

process, allowing the weights to explore in a direction that the mentor thinks is a

good direction, while still not letting the gradients to explode or vanish.

For a particular weight w ∈ S at any layer, a typical update rule without the

probe is,

wt+1 = wt − η ∂

∂w
Ls, (4.3)

where t is some iteration number, η is the learning rate and assuming αt = 1,∀t. The

update rule with mentored probes is,

wt+1 = wt − η
[
αt

∂

∂w
Ls + βt

∑
∀(l,j)∈B

∂

∂w
Ψ(l, j) + γt

∂

∂w
Ψ(n,m)

]
. (4.4)

77



The last two terms add a guided version of a noise that decreases with each iteration.

While at earlier stages of training, this allows the weights to explore the space, it

also restricts the weights from exploding because the direction that the weights are

allowed to explore is controlled by the mentor. The freedom to explore tightens up as

the as learning proceeds, provided gβ(t) is a monotonically annealing function with

respect to t. Note that even though to calculate these error gradients we need one

forward propagation through M, we do not back propagate through M. This is

a penalty on the weights, even though we are using the activations to penalize the

weights indirectly. Although mentee networks can be further regularized with l2,

l1, dropouts and batch normalizations, it is recommended that the mentee networks

imposes additional regularizations mirroring the mentor networks for better learning.

Different Configurations of Mentee Networks

Different combinations of α, β and γ produces different characteristics of mentee

networks. Equation 4.4 can be seen as learning with three different learning rates,

α∗η, β ∗η and γ ∗η. We can simulate using these three parameters, two idiosyncratic

personalities of mentee networks: an obedient network and an adamant network. An

obedient network is a network that focuses on learning the representation more than

the label costs at the beginning stages and once a good representation is learnt, it

focuses on learning the label space. It tends towards being over-regularized and its

regularization relaxes with epochs. An adamant network is a network that focuses

almost immediately on the labels as much as learning the representation, but its focus

is positively towards learning the label only. The learning rates of these personalities

are shown in figure 4.2.

An independent network can be considered as a special case of the adamant net-

work where probe weights are ignored (β = 0, γ = 0, ∀t). The other extreme case

78



Epochs

0 50 100 150
0

0.01

0.02

0.03

0.04
Obedient Mentee

α * η

β * η

γ * η

η

Epochs

0 50 100 150
0

0.01

0.02

0.03

0.04
Adamant Mentee

α * η

β * η

γ * η

η

Mentoring Phase Self-study Phase

Figure 4.2: Annealing α, β and η while learning for an obedient and an adamant
network.

of an obedient network is perhaps a gullible network that learns just the embedding

space of the mentor. Gullible networks are also a good way to initialize a network in

an unsupervised mentoring fashion. Consider a dataset d2, that does not have any

labels. Neither the mentor nor the mentee could potentially learn any discriminative

features. Using just the probes we could build an error function that could make the

smaller mentee network still learn a good representation for the dataset. We use the

information from the parent network to learn a good representation for d2 by simply

back propagating the second term of equation 4.2 alone. These gullible mentees come

in really handy when the dataset has considerably less samples to be supervised with.

Unsupervised mentoring is also an aggressive way to initialize a network and is often

helpful in learning large networks in a stable manner with a stable initialization.

Typically the deeper one goes, the more difficult it becomes to learn the activations

and the costs saturate quickly. The softmax layer is the most difficult to learn. To our

surprise we find that probe costs converge much sooner than the label costs, leading

us to believe that the representations being mentored are indeed relevant as long as

79



the datasets share common characteristics. There is a plethora of such configurations

that could be tried and many unique characteristics discovered. In this article we

limit ourselves to only those that enable us stability during learning and focus on

those that help us with better generalizations.

For learning large networks we prefer the use of obedient networks as obedient

networks are heavily regularized at the beginning leading to careful initialization

and stabilization of the network before learning of labels takes over. We call the

stabilization phase as the mentoring phase and the rest, self-study phase. During the

mentoring phase learning is slow but steady. In most cases, α ∗ η is an increasing

function due to the aggressive climb of α. The annealing of these rates for a typical

obedient mentee and an adamant mentee are shown in figure 4.2. We also find that

typically the later layers are more stubborn in being mentored than earlier layers.

Although this is typically to be expected, more obedience may be enforced by choosing

higher β values for layers that are deeper in the network.

4.4 Design of Experiments

We evaluate the effectiveness of mentorship through the following experiment

designs:

4.4.1 Effectiveness

To demonstrate the effectiveness of learning, we first train a larger network on a

dataset. Using this network as a mentor, we train the mentee network on the same

dataset. Unlike those in literature, we choose mentee networks that are generally

much smaller than the mentor. We show that this generalizes at least as well as an

independent network of the exact same architecture regularized not by mentor, but

by batch normalization, l2 and l1 norms and dropouts. Training mid-sized networks

80



on small datasets are often difficult. To our best knowledge we have provided our best

effort in meticulously learning all the networks. For learning an independent network

often we spent additional effort in adjusting the learning rates at the opportune

moments. We show that mentee networks outperforms the independent networks

and even at the worst case performs as well as the independent networks.

4.4.2 Generality of the Learnt Representations

To demonstrate that the network learns a more general representation, we gather

a pair of datasets of seemingly similar characteristics with one more general or larger

than the other. We train the mentor with the more general dataset first and then

fine tune it on the less general dataset. We then train both the independent and

the mentee nets on the less general dataset and demonstrate again that at worst the

mentee net performs the same as the independent net.

We then proceed to fine tune the classifier layer of both the mentee net and the

independent net using the more general dataset but since the other layers are not

allowed to change, the mentee net does not have any additional supervision. This

tests the quality of the features learnt by these networks on a more general and more

difficult dataset. For the sake of our experiments we consider the pairing of (Cifar-10

- Cifar-100) and (Caltech-101 - Caltech-256) Krizhevsky and Hinton (2009); Griffin

et al. (2007). We assume that Cifar-100 is more general than Cifar-10 and Caltech-256

is more general than Caltech-101.

Additionally, we conduct another experiment where we try to learn from a mentor

network trained with the full MNIST dataset, a mentee network that only has su-

pervision from a part of the dataset LeCun et al. (1998a). The independent network

also in this case, learns with the same redacted dataset. We redact the dataset by

only having p samples for each class in the dataset where p ∈ {500, 250, 100, 50, 10, 1}.

81



Epochs
0 10 20 30 40 50 60 70 80 90 100

0

0.005

0.01

0.015

0.02
Conifguration For Learning VGG-19 using Caltech 101

α * η

β * η

γ * η

η

Fine Tuning Begins Here

Figure 4.3: Annealing α, β and η while learning VGG-19 space for Caltech-101. We
used an obedient network.

p = 1 is essentially an ambitious goal of 1-shot learning from scratch using a deep

network. We also try this with a mentee network that is initialized by unsupervised

mentoring from the same mentor network. We acknowledge that the comparison with

unsupervised mentoring is unfair because the mentee net is initialized by the mentor

with information filtered from data that is unavailable for the independent network.

The latter results are to demonstrate that unsupervised mentoring could learn an

effective feature space even without labels and with very less samples.

4.4.3 Learning the VGG-19 Representation

In particular, while learning classification on the Caltech101 dataset, we try to

learn the same representation as the popularly used VGG-19 network at various levels

of the network hierarchy Simonyan and Zisserman (2014b). VGG-19 network’s 4096

dimensional representation is one of the most coveted and iconic image features in

computer vision at the time of the writing of this article. The VGG-19 network has

16 convolutional layers and 2 fully-connected layers the last of which produces the

82



4096 dimensions of features upon which many other works have been built.

We try to learn the same 4096 dimensional representation of the VGG-19 network

using ambitiously less number of layers. For the (Caltech-101-Caltech256) dataset

pairs in all our experiments, there is no explicit mentor network that we learnt.

We simply set gγ(t) = 0,∀t and learnt with probes without retraining the VGG-19

network. In a way we are attempting to learn VGG-19’s view of the Caltech-101

dataset and are probing into the representational frame of the VGG-19 network. We

used a relatively obedient student as shown in figure 4.3 for this case.

4.4.4 Implementation Details

The independent networks were all regularized with a l1 and l2 penalties with

a weight of 1e−4, which seems to give the best results. On all networks we also

applied parametrized batch norm for both fully connected and convolutional layers

and dropouts with rate of p = 0.5 for the fully connected layers Ioffe and Szegedy

(2015); Srivastava et al. (2014). We find that dropout and bath norm together help

in avoiding over-fitting. All our activation functions were rectified linear units Nair

and Hinton (2010). For learning the mentee network we start with learning rates

as high as 0.5, for the larger independent networks we are forced a learning rate of

0.001, while for the smaller experiments we were able to go as high as 0.01, since the

batch sizes were larger. During training, if ever we ran into exploding gradients or

NaNs, we reduce the learning rate by ten times, reset the parameters back to one

epoch ago and continue training. We train until 75 epochs after which we reduce

the learning rate by a hundred times and continue fine-tuning until early stopping.

Unless early stopped, we train for 150 epochs. All our initializations were from a 0-

mean Gaussian distribution, except the biases which were initialized with zeros. The

experiment set-up was designed using Theano v0.8 and the programs were written

83

http://deeplearning.net/software/theano/


by ourselves 4 Bastien et al. (2012). The experiments with MNIST datasets were

conducted on a Nvidia GT 750M GPU, the others on an Nvidia Tesla K40c GPU,

with cuDNN 3007 and Nvidia CUDA v7.5. The mini-batch sizes for all the MNIST

and cifar experiments were 500 (unless forced by small dataset size in which case we

performed batch descent instead of the usual stochastic descent). The mini-batch sizes

for all Caltech experiments were 36, with images resized to 224X224 so as to the fit

the VGG-19 requirement. Apart from normalization and mean-subtraction, no other

pre-processing were applied to any of the images. For the Caltech experiments we

used Adagrad with Polyak’s momentum Polyak (1964); Green et al. (2013). For the

experiments that were smaller networks we used RMSprop with Nesterov’s accelerated

gradient Dauphin et al. (2015); Nesterov (1983). It is to be noted that we chose to

use vanilla networks that are as simple as possible so as to enable us to compare

against a baseline which is also vanilla. Since our aim is not to achieve state-of-the-art

accuracies on any datasets, we didn’t implement several techniques that are commonly

applied to boost the network performances in modern day computer vision. The

purpose of these experiments is to unequivocally demonstrate that among networks

that learn from scratch, one that is mentored can perform better and learn more

general features than one that is not.

4.5 Results

The results are split across two tables based on the network architectures. The

smaller experiments on a 5 layer network are shown in figure 4.4 and the larger ones

in figure 4.5. The → symbol shows which layers are probed and from where.

In figure 4.4, the results clearly demonstrate the strong performance of the mentee

networks over the independent networks. In the cifar experiments we under-weighted

4Code is available at our GitHub page.

84

https://developer.nvidia.com/cudnn
http://www.nvidia.com/object/cuda_home_new.html
https://github.com/ragavvenkatesan/regularizer-network


Network Mentor Mentee Independent

Architecture

Convolutional Layers
Activation: ReLU

Stride: 1
Max Pooling: 2

Kernel Size: 5
Neurons: 20 Kernel Size: 5

Neurons: 20
Kernel Size: 5
Neurons: 20Kernel Size: 3

Neurons: 50
Fully Connected Layers

Activation: ReLU
Dropout Input Rate: 0.5

Neurons: 800 Neurons: 800 Neurons: 800

Neurons: 800 Neurons: 800 Neurons: 800

Output Layer Neurons: 10/100 Neurons: 10/100 Neurons: 10/100

Accuracies

Trained from scratch
Cifar 10 79.36 % 68.5 % 68.58 %

Fine-tuned last layer only
Cifar 100 41.21% 33.2 % 26.67%

MNIST - 500

MNIST
99.59%

97.73%
97.71%

unsupervised mentoring 98.2%

MNIST-250
97.47 % 

96.89 %
unsupervised mentoring 97.88%

MNIST-100
97.42%

95.12%
unsupervised mentoring 96.01%

MNIST-50
92.95%

90.96%
unsupervised mentoring 96.80%

MNIST-10
78.5 %

75.3%
unsupervised mentoring 96.7%

MNIST - 1
48.5%

41.5%
unsupervised mentoring 96.7%

Figure 4.4: Architecture and Results for the Experiments with CIFAR and MNIST
Datasets.

γ purposely as we didn’t want to propagate the 20% of error from the mentor network

on to the mentee network. The results on Cifar 10 from scratch seem to indicate that

both networks have reached the best possible performance for that architecture. We

believe with the amount of supervision already provided from the 40,000 training

images, mentoring is not as effective. When there is already ample supervision,

mentoring is ineffective, or rather unwanted, albeit it doesn’t hurt. While fine-tuning

on cifar 100, we find that there are great gains to be made.

We find a similar trend with the MNIST experiments also. The less data there is,

the higher the gain of the mentee networks. Note that even though mentee networks

are regularized, care was taken to ensure that they both go through the exact same

number of iterations at the exact same learning rate. We also found that unsuper-

85



Network Mentor (VGG-19) Mentee Independent

Architecture

Convolutional Layers
Stride: 1

Kernel Size: 3
Activation ReLU

Neurons: 64
Max Pooling: 1 Neurons: 64

Max Pooling: 2
Neurons: 64

Max Pooling: 2Neurons: 64
Max Pooling: 2
Neurons: 128

Max Pooling: 1 Neurons: 128
Max Pooling: 2

Neurons: 128
Max Pooling: 2Neurons: 128

Max Pooling: 2
Neurons: 256

Max Pooling: 1

Neurons: 256
Max Pooling: 2

Neurons: 256
Max Pooling: 2

Neurons: 256
Max Pooling: 1
Neurons: 256

Max Pooling: 1
Neurons: 256

Max Pooling: 2
Neurons: 512

Max Pooling: 1

Neurons: 512
Max Pooling: 2

Neurons: 512
Max Pooling: 2

Neurons: 512
Max Pooling: 1
Neurons: 512

Max Pooling: 1
Neurons: 512

Max Pooling: 2
Neurons: 512

Max Pooling: 1 Neurons: 512
Max Pooling: 2

Neurons: 512
Max Pooling: 2Neurons: 512

Max Pooling: 1
Neurons: 512

Max Pooling: 1 Neurons: 512
Max Pooling: 2

Neurons: 512
Max Pooling: 2Neurons: 512

Max Pooling: 2
Fully Connected Layers

Activation: ReLU
Dropout Input Rate: 0.5

Neurons: 4096 Neurons: 4096 Neurons: 4096

Neurons: 4096 Neurons: 4096 Neurons: 4096

Softmax Layer Neurons: 102/256 Neurons: 102/256

Accuracies

Trained from scratch on 
Caltech 101 N/A 56.16% 45.46%

Fine-tuned last layer only 
for Caltech 256 N/A 66.12 % 55.45%

Figure 4.5: Architecture and results for the Experiments with Caltech Datasets.

vised mentoring always keeps the learning at a very high standard although as was

discussed in section 4.4.2 there was additional supervision on the entire dataset from

the unsupervised mentoring, which is unfair.

86



a) VGG-19 Mentor b) Gullible Mentee

c) Obedient Mentee d) Adamant Mentee

Figure 4.6: VGG-19 first layer filters and filters probed using Caltech101 for a
Gullible, Obedient and an Adamant mentee after only one epoch of training. We
recommend viewing this image on a computer monitor.

In the experiments with the Caltech101 datasets, we find that the mentee net-

works perform better than the vanilla network. The mentee network was also able

87



to perform significantly better than the independent network when only the classi-

fier/mlp sections were allowed to learn the Caltech256 dataset with representation

learnt from Caltech101. This proves the generality of the feature space learnt. With

an even obedient student, we were able to learn the feature space of the VGG-19

network to a remarkable degree. While with the first convolutional layer we were able

to learn to a minimum rmse or 0.0023 from 6.54 at random. With the last two layers

we were able to learn upto a rmse of 2.04 from 12.76 at random.

Figure 4.6 shows the filters learnt after one epoch for a gullible network, an obedi-

ent network and an adamant network. All these networks were initialized with same

random values at their inception. We can easily notice that the gullible network

already sway towards the VGG-19 filters. In obedient mentee, we notice that most

corner detector features are already swaying towards the mentee network but more

complex features are not swaying as much as the gullible network. To our surprise

we notice that even in an adamant network corner detectors are swaying towards

VGG-19. This shows that even with low weights, the first layer features are learning

the VGG-19’s representation. It is to be noted that we are not learning the weights

directly, but are learning the activations produced by the VGG-19 network for the

Caltech101 dataset that leads us to learn the same filters as the VGG-19. This implies

that corner features are more general among the Imagenet dataset, which VGG-19

was trained on, and the Caltech101 dataset, which explains why they are learnt earlier

than others.

4.6 Conclusions

While the use of large pre-trained networks will continue to remain popular, be-

cause of the ease in just copying a network and fine-tuning the last layers, we believe

that there is still a need for learning small and mid-sized networks from scratch. We

88



also recognize the difficulty involved in reliably training deep networks with very few

data samples. One way to meet the best of both worlds is by using a mentored learn-

ing approach. In our study, we find that a shallower mentee network was able to learn

a new representation from scratch while being regularized by the mentor network’s

activations for the same input samples. We found that such mentoring provided much

stabler training even at higher learning rates. We noted some special cases of these

networks and recognize some idiosyncratic personalities. We extended one of these to

be able to perform as an unsupervised initialization technique. We showed through

compelling experiments, the strong performance and generality of mentor networks.

89



Chapter 5

INCREMENTAL LEARNING

5.1 Introduction

Animals and humans learn incrementally. A child grows its vocabulary of iden-

tifiable concepts as different concepts are presented, without forgetting the concepts

with which they are already familiar. Antithetically, most supervised learning systems

work under the omniscience of the existence of all classes to be learned, prior to train-

ing. This is crucial for learning systems that produce an inference as a conditional

probability distribution over all known categories.

Incremental supervised learning though reasonably studied, lacks a formal and

structured definition. One of the earliest formalization of incremental learning comes

from the work of Jantke Jantke (1993). In this article the author defines incremen-

tal learning roughly as systems that “have no permission to look back at the whole

history of information presented during the learning process”. Immediately following

this statement though is the relaxation of the definition: “Operationally incremental

learning algorithms may have permission to look back, but they are not allowed to use

information of the past in some effective way”, with the terms information and effec-

tive not being sufficiently well-defined. Subsequently, other studies made conforming

or divergent assumptions and relaxations thereby adopting their own characteristic

definitions. Following suit, we redefine a more fundamental and rigorous incremental

learning system using two fundamental philosophies: data membrane and domain

agnosticism.

Consider there are two sites: the base site Sb and the incremental site Si each

90



(b
)

(c
)

(d
)

(a
)

(a) (b) (c) (d)

Figure 5.1: Catastrophic forgetting: Figure (a) is the confusion matrix of a network
Nb, trained and tested on data from a subset containing only samples of labels 0 . . . 5.
Figure (b) is the confusion matrix of a network initialized with the weights of trained
Nb, re-trained with data from classes 6 . . . 9 and tested on the same label space. No
testing samples were provided for the classes 0 . . . 5. Figure (c) is the same network
as (b) tested on the entire label space. Figure (d) is similar to (c) but trained with
a much lower learning rate. These confusion matrices demonstrate that a neural
network retrained on new labels without supplying it data from the old data subset,
forgets the previous data, unless the learning rate is very measured and slow as was
the case in (d). If the learning rate were slow, though the old labels are not forgotten,
new labels are not effectively learned.

with ample computational resources. Sb possesses the base dataset Db = {(xbl , ybl ), l ∈

{1, 2, . . . n}}, where xbl ∈ Rd,∀l and ybl ∈ {1, 2, . . . j},∀l. Si possesses the increment

dataset Di = {(xil, yil), l ∈ {1, 2, . . .m}}, where xil ∈ Rd,∀l and yil ∈ {j + 1, j +

2, . . . c},∀l and yil 6∈ {0, 1, . . . j},∀l.

Property 1. Db is only available at Sb and Di is only available at Si. Neither set

can be transferred either directly or as features extracted by any deterministic encoder,

either in whole or in part to the other site, respectively.

Sb is allowed to train a discriminative learner Nb using Db and make Nb available

to the world. Once broadcast, Sb does not maintain Nb and will therefore not support

queries regarding Nb. Property 1 is referred to as the data membrane. Data membrane

ensures that Si does not query Sb and that no data is transferred either in original

form or in any encoded fashion (say as feature vectors). The generalization set at

Si contains labels in the space of y ∈ {1 . . . c}. This implies that though Si, has no

91



data for training the labels 1 . . . j, the discriminator Ni trained at Si with Di alone is

expected to generalize on the combined label space in the range 1 . . . c. Si can acquire

Nb and other models from Sb and infer the existence of the classes y ∈ {1, 2, . . . j}

that Nb can distinguish. Therefore incremental learning differs from the problem of

zero-shot novel class identification.

A second property of multi-class incremental learning is domain agnosticism,

which can be defined as follows:

Property 2. No priors shall be established as to the dependencies of classes or do-

mains between Db and Di.

Property 2 implies that we cannot presume to gain any knowledge about the label

space of Db ({0 . . . j}) by simply studying the behaviour of Nb using Di. In other

words, the predictions of the network Nb does not provide us meaningful enough

information regarding Di. This implies that the conditional probability distribution

across the labels in y ∈ {0 . . . j}, PNb
(y|x) for (x, y) ∈ Di produced by Nb, cannot

provide any meaningful inference to the conditional probability distribution across

the labels y ∈ {j + 1 . . . c} when generalizing on the incremental data. For any

samples x ∈ Di, the conditional probability over the labels of classes y ∈ {0 . . . j} are

meaningless. Property (2) is called domain agnosticism.

From the above definition it is implied that sites must train independently. The

training at Si of labels y ∈ {j + 1 . . . c} could be at any state when Sb triggers site Si

by publishing its models, which marks the beginning of incremental training at Si. To

keep experiments and discussions simpler, we assume the worst case scenario where

the site 2 does not begin training by itself, but we will generalize to all chronology in

the later sections.

We live in a world of data abundance. Even in this environment of data affluence,

92



we may still encounter cases of scarcity of data. Data is a valuable commodity and

is often jealously guarded by those who posses it. Most large institutions and organi-

zations that deploy trained models, do not share the data with which the models are

trained. A consumer who wants to add additional capability is faced with an incre-

mental learning problem as defined. In other cases, such as in military or medicine,

data may be protected by legal, intellectual property and privacy restrictions. A

medical facility that wants to add the capability of diagnosing a related-but-different

pathology to an already purchased model also faces a similar problem and often has

to expend large sums of money to purchase an instrument with this incrementally ad-

ditional capability. All these scenarios are plausible contenders for strict incremental

learning following the above definition. The data membrane property ensures that

even if data could be transferred, we are restricted by means other than technologi-

cal, be it legal or privacy-related that prevents the sharing of data across sites. The

domain agnosticism property implies that we should be able to add the capability

of predicting labels to the network, without making any assumptions that the new

labels may or may not hold any tangible relationship to the old labels.

A trivial baseline: Given this formalism, the most trivial incremental training pro-

tocol would be to train a machine at Sb with Db, transfer this machine (make it

available in some fashion) to Si. At Si, initialize a new machine with the parameters

of the transferred machine, while alerting the new machine to the existence of classes

j + 1, . . . c and simply teach it to model an updated conditional probability distribu-

tion over classes {1, 2, . . . c}. A quick experiment can demonstrate to us that such a

system is afflicted by a well-studied problem called catastrophic forgetting. Figure 5.1

demonstrates this effect using neural networks. This demonstrates that without sup-

plying samples from Db, incremental training without catastrophic forgetting at Si is

difficult without relaxing our definition.

93



To avoid this, we propose that the use of generative models trained at Sb, be

deployed at Si to hallucinate samples from Db. The one-time broadcast from Sb

could include this generator along with the initializer machine that is transferred.

While this system could generate samples-on-demand, we still do not have targets for

the generated samples to learn classification with. To solve this problem, we propose

the generation of supervision from the initializer network itself using a temperature-

raised softmax. A temperature-raised softmax was previously proposed as a means

of distilling knowledge in the context of neural network compression Hinton et al.

(2015). Not only does this provide supervision for generated samples, but will also

serve as a regularizer while training a machine at Si, similar to the fashion described

in Hinton et al. (2015).

In summary this chapter provides two major contributions: 1. A novel, uncom-

promising and practical definition of incremental learning and 2. a strategy to attack

the defined paradigm through a novel sampling process called phantom sampling.

The rest of this chapter is organized as follows: section 5.2 outlines the proposed

method, section 5.3 discusses related works on the basis of the properties we have

presented, section 5.4 presents the design of our experiments along with the results

and section 5.6 provides concluding remarks.

5.2 Proposed Method

Our design begins at Sb. Although Sb and Si may train at various speeds and

begin at various times, in this presentation we focus on the systems that mimic the

following chronology of events:

1. Sb trains a generative model Gb and a discriminative model Nb for P (xb) and

PNb
(y|xb) using (xb, yb) ∈ Db, respectively.

94



Sb

Data from 
base dataset

Stochastic sampling from  a random distribution

G
en

er
at

or
 

N
et

w
or

k

Softmax Layer

Real or Fake

Data generated 
by the generator

D
is

cr
im

in
at

or
 

N
et

w
or

k

Db

Fu
lly

 C
on

ne
ct

ed
 L

ay
er

s

Softmax Layer

Convolution Layer - I

Convolution Layer - II

Gb

Nb
Si

DiData from 
incremental dataset

Gb

Hallucinated 
targetsNb

Hallucinated samples

Ph
an

to
m

 S
am

pl
in

g

Combined Data

Temperature Softmax Layer

Softmax Layer Ni

N’b(x)

N’i(x)

𝑃,-(y
/|x/,T)

𝑃,-(y
/|x/,T=1)

𝑃,5(y6|x6,T)

P(y6|x6,T=1)

Figure 5.2: Sites Sb, Si and the networks that they train respectively. The networks
Gb and Nb are transferred from Sb to Si and work in feed-forward mode only at Si.
In this illustration using MNIST dataset, j = 5. Classes [0 . . . 5] are in Db and classes
[6 . . . 9] are available in Di

2. Sb broadcasts Gb and Nb.

3. Si collects the models Gb and Nb and initializes new model Ni with the parame-

ters of Nb adding new random parameters as appropriate. Expansion using new

random parameters is required since, Ni should make predictions on a larger

range of labels.

4. Using Di together with phantom sampling from Gb and Nb, Si trains the model

Ni until convergence.

95



This is an asymptotic special case of the definition established in the previous section

and is therefore considered. Other designs could also be established and we will

describe briefly a generalized approach in the latter part of this section. While the

strategy we propose could be generalized to any discriminatory multi-class classifier,

for the sake of clarity and being precise, in this article we restrict our discussions to

the context of deep neural networks.

The generative model, Gb models P (x|Db). In this article we considered networks

that are trained as simple generative adversarial networks (GAN) for our generative

models. GANs have recently become very popular for approximating and sampling

from distributions of data. GAN was originally proposed by Goodfellow et. al, in 2014

and has since seen many advances Goodfellow et al. (2014). We consider the GANs

proposed in the original article by Goodfellow et. al, for the sake of convenience. We

use a simple convolutional neural network model as the discriminator Nb. Figure 5.2

shows the overall architecture of our strategy with Gb and Nb within the Sb capsule.

As can be seen, Gb attempts to produce samples that are similar to the data and Nb

learns a classifier using the softmax layer that is capable of producing PNb
(yb|xb) as

follows: 
PNb

(y = 1|xb)
...

PNb
(y = j|xb)

 =
1∑j

p=1 e
w

(p)
b N ′b(x)


ew

(1)
b N ′b(x)

...

ew
(j)
b N ′b(x)

 , (5.1)

where, wb is the weight matrix of the last softmax layer with w
(p)
b representing the

weight vector that produces the output of the class p and N ′b(x) is the output of the

layer in Nb, immediately preceding the softmax layer. Once this network is trained,

Sb broadcasts these models.

At Si, a new discriminative model Ni is initialized with the parameters of Nb. Nb

is trained (and has the ability) to only make predictions on the label space of Db, i.e.

96



{1 . . . j}. The incremental learner model Ni therefore, cannot be initialized with the

same weights in the softmax layer of Nb alone. Along with the weights for the first

j classes, Ni should also be initialized with random parameters as necessary to allow

for the prediction on a combined incremental label space of {1 . . . c}. We can simply

do the following assignment to get the desired arrangement:

w
(p)
i =


w

(p)
b , if p ∈ {1 . . . j}

N (0, 1), if p ∈ {j + 1 . . . c}
. (5.2)

Equation 5.2 describes a simple strategy where the weight vectors are carried over

to the first j classes and random weight vectors are assigned to the rest of the c− j

classes. In figure 5.2, the gray weights in Ni represent those that are copied and the

red weights represent the newly initialized weights.

We now have at Si, a network that will generate samples from the distribution

of P (xb) and an initialized network Ni whose layers are setup with the weights from

Nb. To train this network on Di, if we simply ignore Gb and train the network with

samples (xi, yi) ∈ Di, we will run into the catastrophic forgetting problem as discussed

in figure 5.1. To avoid this, we can use samples queried from Gb (such samples are

notationally represented as Gb(z) to indicate sampling using a random vector z) and

use these samples to avoid forgetting. However we do not have targets for these

samples to estimate an error with. Phantom sampling will help us to acquire targets.

Definition 1. A phantom sampler is a process of the following form:

P : (z, T,Nb, Gb)→ {Gb(z), PNb
(y|Gb(z), T )}. (5.3)

where, y ∈ {0 . . . j} and T is a temperature parameter which will be described

below. Using Nb and Gb, we can use this sampling process to generate sets of sample-

target pairs that simulate samples from the dataset Db. Simply using PNb
(yb|xb) is not

97



possible as we do not have access to xb at Si, and Si is not allowed to communicate with

Sb regarding the data due to the data membrane condition described in property 1.

We can however replace xb with Gb(z) and use the generated samples to produce

targets from this network for the generated samples itself. This is justifiable since

Gb(z) is learnt to hallucinate samples from P (xb). However, given that we only use a

simple GAN and that the samples are expected to be noisy, we might get corrupted

and untrustworthy targets. GANs have not advanced sufficiently to a degree where

perfect sampling is possible at the image level, at the moment of writing this article.

As GAN technology improves, much better sampling could be achieved using this

process.

Given that GANs (and any other similar generative models) are imperfect, often

samples can have properties that are blended from two or more classes. In these cases,

the targets generated from Nb might also be too high for only one of these classes,

which is not optimal. To avoid this problem, we use a replacement for the softmax

layer of Nb with a new temperature-raised softmax layer,
PNb

(y = 1|xb, T )

...

PNb
(y = j|xb, T )

 =
1∑j

p=1 e
w
(p)
b

N′
b
(x)

T


e

w
(1)
b

N′b(x)
T

...

e
w
(j)
b

N′b(x)
T

 . (5.4)

This temperature-raised softmax for T > 1 (T = 1 is simply the softmax described in

equation 5.1) provides a softer target which is smoother across the labels. It reduces

the probability of the most probable label and provides rewards for the second and

third most probable labels also, by equalizing the distribution. Soft targets such as

the one described and their use in producing ambiguous targets exemplifying the

relationships between classes were proposed in Hinton et al. (2015). In this context,

the use of soft targets for Gb(z) helps us get appropriate labels for the samples that

may be poorly generated. For instance, a generated sample could be in between

98



classes 8 and 0. The soft target for this will not be a strict 8 or a strict 0, but a

smoother probability distribution over the two (all the) classes.

While learning Ni, with a batch of samples from Di, we may simply use a negative

log-likelihood with the softmax layer for the labels. To be able to back-propagate

samples from phantom sampling, we require a temperature softmax layer at Ni as

well. For this, we simply create a temperature softmax layer that share the weights

wi, of the softmax layer of Ni, just as we did for Nb. This implies that Ni will have

c− j + 1 additional units for which we would not have targets as phantom sampling

will only provide us with targets for the first j classes. Given that the samples

themselves are hallucinated from Gb(z), the optimal targets to assign for the output

units [j + 1 . . . c] of the temperature softmax layer are zero. Equivalently, we could

simply avoid sharing the extra weights. Therefore along with the phantom sample’s

targets, we concatenate a zero vector of length [j+1 . . . c]. This way, we could simply

back-propagate the errors for the phantom samples also. The error for data from Di

is,

e(wi, x
i ∈ Di) = L(yi, arg max

y
PNi

(y|xi)), (5.5)

where, L represents an error function. The error for phantom samples is,

e(wi, Gb(z)) = L(PNb
(y|Gb(z), T ), PNi

(y|Gb(z), T )). (5.6)

Typically, we use a categorical-cross-entropy for learning labels and a root mean-

squared error for learning soft-targets.

While both samples from Di and from the phantom sampler are fed-forward

through the same network, the weights are updated for two different errors. If the

samples come from the phantom sampler, we estimate the error from the temperature

softmax layer and if the samples come from Di, we estimate the errors from the soft-

max layer. For every k iterations of Db, we train with 1 iteration of phantom samples

99



G(z). k is decided based on the number of classes that are in each set Db and Di.

Thus far we have assumed a certain chronology of events where Si begins training

only after Sb is finished training. We could generalize this strategy of using phantom

sampling when Si is already, partially trained by the time Sb finishes and triggers the

incremental learning. In this case, we will not be able to re-initialize the network Ni

with new weights, but as long as we have phantom samples, we can use a technique

similar to mentor nets or fitnets, using embeded losses between Nb and Ni and transfer

knowledge about Db to Ni Romero et al. (2014) Venkatesan and Li (2016). This

strategy could also be extended to more than one increment of data in a straight-

forward manner. Using the same phantom sampling technique we could continue

training the GAN to update it with the distributions of the new classes. Once trained,

we can pass on this GAN and the newly trained net Ni to the next incremental site.

5.3 Related Work

Catastrophic Forgetting: Early works by McCloskey, French and Robins outlines

this issue McCloskey and Cohen (1989); French (1993); Robins (1995). In recent

years, this problem has been tackled using special activation functions and dropout

regularization. Srivastava et al. demonstrated that the choice of activation function

affects catastrophic forgetting and introduced the Hard Winner Take All (HWTA)

activation Srivastava et al. (2013). Goodfellow et al. argued that increased dropout

works better at minimizing catastrophic forgetting compared to activation functions

Goodfellow et al. (2013a). All these studies were made in regards to unavailability of

data for particular classes, rather than in terms of incremental learning.

We find that most previous works in incremental learning, relaxes or violates the

rigorous constraints that we have proposed for an incremental learner. While this

may satisfy certain case studies, pertaining to each article, we find no work that has

100



addressed our definition sufficiently. In this section, we organize our survey of existing

literature in terms of the conditions they violate.

Relaxing the data membrane: The following approaches relax property (1) to

varying degrees. Mensink et al. develop a metric learning method to estimate the

similarity (distance) between test samples and the nearest class mean (NCM) Mensink

et al. (2012, 2013). The class mean vectors represent the centers of data samples be-

longing to different classes. The learned model is a collection class center vectors and

a metric for distance measurement that is determined using the training data. The

NCM approach has also been successfully applied to random forest based models for

incremental learning in Ristin et al. (2014). The nodes and leaves of the trees in the

NCM forest are dynamically grown and updated when trained with data from new

classes. A tree of deep convolutional networks (DCNN) for incremental learning was

proposed by Xiao et al. Xiao et al. (2014). The leaves of this tree are CNNs with a

subset of class outputs and the nodes of the tree are CNNs which split the classes.

With the input of new data and classes, the DCNN grows hierarchically to accommo-

date the new classes. The clustering of classes, branching and tree growth is guided

by an error-driven preview process and their results indicate that the incremental

learning strategy performs better than a network trained from scratch.

The Learn++ is an ensemble based approach for incremental learning Polikar

et al. (2001) Muhlbaier et al. (2009). Based on the Adaboost, the algorithm weights

the samples to achieve incremental learning. The procedure, however requires every

data batch to have examples from all the previously seen classes. In Kuzborskij et al.

(2013), Kuzborskij et al. develop a least squares SVM approach to incrementally

update a N-category classifier to recognize N+1 classes. The results indicate that the

model performs well only when the N+1 classifier model is also trained with some

data samples from the previous N classes.

101



iCaRL is an incremental representation based learning method by Rebuffi et al.

Rebuffi et al. (2017). It progressively learns to recognize classes from a stream of

labeled data with a limited budget for storing exemplars. The iCaRL classification

is based on the nearest-mean-of-exemplars. The number of exemplars for each class

is determined by a budget and the best representation for the exemplars is updated

with existing exemplars and newly input data. The exemplars are chosen based

on a herding mechanism that creates a representative set of samples based on a

distribution Welling (2009). This method while being very successful, violates the

membrane property by transferring well-chosen exemplar samples. In our results

section we address this idea by demonstrating that significant amount of (randomly

chosen) samples are required to out-perform our strategy, which violates the budget

criteria of the iCaRL methods.

Relaxing data agnosticism: Incremental learning procedures that draw inference

regarding previously trained data based on current batch of training data, can be

viewed as violating this constraint. Li et al. use the base classifier Nb to estimate

the conditional probabilities P (ŷ|x) for x : (x, y) ∈ Di. When training Ni with Di,

they use these conditional probabilities to guide the output probabilities for classes

y ∈ [1, . . . , j] Li and Hoiem (2016). In essence, the procedure assumes that if Ni is

trained in such a manner that P (ŷ|x) for x : (x, y) ∈ Di is the same for both classifier

Nb and Ni, this ensures that P (ŷ|x) for x : (x, y) ∈ Db will also be the same. This is a

strong assumption relatingDb andDi violating agnosticism. The authors Furlanello et

al. develop a closely related procedure to in Furlanello et al. (2016). They train neural

networks for the incremental classifier Ni by making sure the conditional probabilities

P (ŷ|x) for x : (x, y) ∈ Di is the same for both Nb and Ni. The only difference

compared to Li and Hoiem (2016) is in the regularization of network parameters

using weight decay and the network initialization. In another procedure based on the

102



same principles, Jung et al. constrain the feature representations for Di to be similar

to the feature representations for Db Jung et al. (2016).

Other models assume that the parameters of the classifiers wb for Nb and wi for Ni

are related. Kirkpatrick et al. model the probability P (wb|Db) and get an estimate for

the important parameters in wb Kirkpatrick et al. (2017). When training Ni initialized

with parameters wb, they make sure not to offset the important parameters in wb.

This compromises the training of Ni under the assumption that important parameters

in wb for Db are not important for Di.

Closely related to the previous idea is pseudo-rehearsal proposed by Robins in

1995 Robins (1995). Neuro-biological underpinnings of this work was also studied by

French et. al, French (1997). This method is a special case of ours if, the GAN was

untrained and produces random samples. In other words, they used Nb to produce

targets for random samples Gb(z) = z → N (0, 1), instead of using a generative model,

similar to phantom sampling. This might partly be due to the fact that sophisticated

generative models were not available at the time. This article also does not use soft

targets such as those that we use because, for samples that are generated randomly,

T = 1 is a better target. This article does not violate any of the properties that we

required for our uncompromising incremental learner.

5.4 Experiments and Results

To demonstrate the effectiveness of our strategy we conduct thorough experiments

using three benchmark datasets: MNIST dataset of handwritten character recogni-

tion, Street view housing numbers (SVHN) dataset and the CIFAR10 10-class visual

object categorization dataset LeCun et al. (1998b); Netzer et al. (2011); Krizhevsky

103



37

47

57

67

77

87

97

0 10 50 100 500 1000 2500 all

A
cc

ur
ac

y 
in

 p
er

ce
nt

ag
e

The number of samples of data from base site transfered to incremental site

MNIST Incremental Training

Base network accuracy Baseline accuracy Random GAN Incremental accuracy

GAN 4 Incremental accuracy GAN 10 Incremental accuracy GAN 39 Incremental accuracy

Strict Data Membrane

Figure 5.3: Results for the MNIST Dataset.

and Hinton (2009). In all our experiments 1 we train the Sb’s GAN, Gb and base

networks Nb independently. The network parameters of all these models are written

to drive, which simulates broadcasting the networks. Once trained, the datasets that

are used to train and test these methods are deleted, simulating the data membrane

and the processes are killed.

We then begin Si as an independent process in keeping with site independence.

This uses a new dataset which is setup in accordance with property 1. Networks Gb

and Nb’s parameters are loaded but only in their feed-forward operations. Two iden-

tical copies of networks Nσ
i and NT

i that share weights are built. These are initialized

with the parameters of Nb, N
σ
i with without temperate and NT

i with temperature

1Our implementations are in theano and our code is available at https://github.com/
ragavvenkatesan/Incremental-GAN.

104

https://github.com/ragavvenkatesan/Incremental-GAN
https://github.com/ragavvenkatesan/Incremental-GAN


softmax layers. By virtue of the way they are setup, updating the weights on one,

updates both the networks. We feed forward k mini batches of data from Di through

the column that connects to the softmax layer and use the error generated here to

update the weights for each mini batch. For every k updates of weights from the data,

we update one mini batch of phantom samples from (Gb(z), PNb
(y|Gb(z), T )). This

is run until early termination or until a pre-determined number of epochs. Since we

save the parameters of Gb after every epoch, we can load the corresponding GAN for

our experiments. We use the same learning rate schedules, optimizers and momen-

tums across all the architectures. We fix our temperature values using a simple grid

search. We conducted several experiments using the above protocol to demonstrate

the effectiveness of our strategy. The following sections discuss these experiments.

5.4.1 Single Dataset Experiments

MNIST: For the MNIST dataset, we used a GAN Gb that samples 10 image genera-

tions from a uniform 0-mean Gaussian. The generator part of the network has three

fully-connected layers of 1200, 1200 and 784 neurons with ReLU activations for the

first two and tanh activation for the last layers, respectively Nair and Hinton (2010).

The discriminator part of Gb has two layers of 240 maxout-by-5 neurons Goodfellow

et al. (2013b). This architecture that mimics the one used by Goodfellow et. al,

closely Goodfellow et al. (2014). All our discriminator networks across both sites Sb

and Si are the same architecture which for the MNIST dataset is, two convolutional

layers of 20 and 50 neurons each with filter sizes of 5× 5 and 3× 3 respectively, with

max pooling by 2 on both layers. These are followed by two full-connected layers of

800 neurons each. All the layers in the discriminators are trained with batch normal-

ization and weight decay with the fully-connected layers trained with a dropout of

0.5 Srivastava et al. (2014); Ioffe and Szegedy (2015).

105



Results of the MNIST dataset are discussed in figure 5.3. The bar graph is divided

into many factions p = [0, 10, . . . all], each representing the performance having p

samples per class transmitted between Sb to Si. Within each faction are five bars,

except p = 0 that has six bars. The first bar at p = 0 represents the state-of-the-

art accuracy with the (base) network trained on the entire dataset (Db ∪ Di, for the

given hypothesis. This is the upper-bound on the accuracies, given the architecture.

The first bar on the left (second for p = 0) represents the accuracy of a baseline

network that is learnt without using our strategy. A baseline network does not use

a phantom sampler and is therefore prone to catastrophic forgetting. The other four

bars represent the performance of networks learnt using our strategy. From left to

right, the Gb for each network is trained for e = [0, 4, 10, 39] epochs, respectively.

Confusion matrices are shown wherever appropriate.

The central result of this experiment is the block of accuracies highlighted within

the blue-shaded box (p = 0), which show the performances while maintaining a strict

data membrane. The confusion matrix in the top-left corner shows the performance

of the base network with p = 0, which is similar to (c) from figure 5.1, demonstrating

catastrophic forgetting. The next confusion matrix that is marked with blue dashed

line depicts the accuracy of Ni with Gb producing random noise. This setup is the

same as in the work by Robins Robins (1995). It can be observed that even when

using a phantom sampler that samples pure noise, we achieve a noticeable boost in

recognition performance, significantly limiting catastrophic forgetting. The confusion

matrix in the bottom-left corner is the performance using Gb trained for only 4 epochs.

This shows that even with a poorly trained GAN, we achieve a marked increase in

performance. The best result of this faction is the confusion matrix highlighted in

the red square. This is the result of a network learnt with phantom sampling with a

GAN Gb that is trained closest to convergence at 39 epochs. It can be clearly noticed

106



that the phantom sampling strategy helps in avoiding catastrophic forgetting, going

so far as to achieve nearly state-of-the-art base accuracy.

The rest of the factions in this experiment make a strong case against the relax-

ation of the data membrane. Consider, for instance, the pair of confusion matrices

at the bottom right, highlighted within the green dotted lines. These represent the

performance of baseline and e = 39 networks, when p = 100 samples per-class were

transmitted through the membrane. A baseline network that was trained carefully

without overfitting produced an accuracy of 89.67% and still retained a lot of confu-

sion (shown in green dashed lines within the confusion matrix). The network trained

with phantom sampling significantly outperforms this. In fact (refer the orange dotted

line among the bars), this relaxation is outperformed by a phantom sampling trained

network even with a poorly trained GAN (with just 10 epochs) while adhering to a

strict data membrane (p = 0). It is only when p = 1000 samples per-class (which is

20%) of the data are being transferred, does the baseline even match the phantom

sampling network with p = 0 (as demonstrated by the blue dotted line among the

bars). All these results conclusively demonstrate the significance of phantom sam-

pling and demonstrate the nonnecessity of the relaxation of the data membrane. An

uncompromising incremental learner was thereby achieved using our strategy.

SVHN and CIFAR 10: For both these datasets we used a generator model that

generates images from 64 Gaussian random variables. The number of neurons in

subsequent fully-connected layers are 1200 and 5408 respectively. This is followed by

two fractionally-strided or transposed convolution layers with filter sizes 3 × 3 and

5× 5 respectively. Apart from the last layer that generates the 32× 32 image, every

layer has a ReLU activation. The last layer uses a tanh activation. Our discriminator

networks including the discriminator part of the GANs have six convolutional layers

with neurons 20, 50, 50, 100, 100 and 250 respectively. Except the first layer, which

107



has a filter size of 5 × 5, every layer has filter sizes of 3 × 3. Every third layer

maxpools by 2. These are followed by two fully-connected layers of 1024 nodes each.

All activations are ReLU.

Results of the CIFAR 10 dataset are shown in figure 5.4 and that of SVHN are

shown in figure 5.5. CIFAR 10 and SVHN contain three channel full-color images that

are sophisticated. GANs, as originally proposed by Goodfellow et. al, fail to generate

reasonably good looking samples for these datasets Goodfellow et al. (2014). Since

we used the same models, the results shown here could be improved significantly with

the invention (or adoption) of better generative models.

We can observe from figures 5.4 and 5.5, that they follow patterns similar to the

MNIST results in figure 5.3. The CIFAR-10 results clearly demonstrate that only

after about 20% of data is transmitted, do the performance come close to matching

the phantom sampler approach. In the SVHN results shown in figure 5.5, we can

observe the marked difference in performance with only few samples being transmit-

ted. Because SVHN is a large dataset in number of samples, the GANs were able

to generate sufficiently good images that lead to superior performance. This result

shows us the advantage our strategy has when working with big datasets. Firstly,

having a big dataset imposes additional penalties for requiring to transmit data and

therefore should be avoided. Secondly, having more number of samples implies that

a simple GAN could generate potentially good looking images, helping us maintain

consistent performance throughout.

5.4.2 Cross-Domain Increments

It could be argued that performing incremental learning within the same dataset

has some advantages in terms of the domain of the datasets being similar. The

similarity in domains could imply that the datasets are general and therefore, the base

108



Figure 5.4: Results for the CIFAR10 dataset. The dotted line is the baseline ac-
curacy learnt by a network with access to all data. This is a proxy for the expected
best achievable results by this architecture.

network already has some features of the incremental dataset encoded in it Venkatesan

et al. (2016a). In this section we demonstrate two special cross-domain cases. In the

first case, the incremental data Di, while sampled from a new domain, has the same

label space as Db . In the second case, Di has new classes that are not seen in Db.

Case 1: In this experiment, our base dataset Db is the MNIST-rotated dataset

developed by Larochelle et al. Larochelle et al. (2007). This is used to learn Gb and Nb.

This is a dataset that is the same as the MNIST dataset, but the samples are randomly

rotated. The incremental data comes from the MNIST dataset . The incremental data

and the base dataset has the same label space. The domain of incremental dataset

Di (MNIST) can be considered as a special subset of the domain of Db (MNIST-

rotated). Therefore, this setup is ripe for a scenario where the incremental site forgets

the expanse of the domain of the base site. The network architecture remains the

same as for the MNIST experiments. The results for this experiment are shown in

figure 5.6. It can be clearly noted that there is about 20% difference in performance

109



Figure 5.5: Results for the SVHN results. These show a much stronger trend
because of the amount of data involved being larger and that GANs have produced
better images than for CIFAR 10.

using our strategy.

Case 2: In this experiment, our base dataset Db is the MNIST dataset and it is

used to learn Gb and Nb. The incremental dataset Di is SVHN. The classes of SVHN

are labelled 10 − 19 at Si and the labels of MNIST are maintained as 0 − 9. This

is essentially incrementing on a new task from a disjoint domain. The results of this

experiment are shown in figure 5.7. It can be clearly noted that there is about 20%

increase in performance using our strategy.

5.5 Extension to Bounded-Continual Learning

So far we have defined and studied incremental learning. Incremental learning

consists of a single increment. In this section, we extend this idea to bounded-

continual learning. Continual learning is incremental learning with multiple incre-

ments. Bounded-continual learning is a special case of continual learning, where the

number of increments is limited. Life-long learning for instance, is an example of

unbounded-continual learning.

110



Baseline Accuracy: 65.39% p=0	Accuracy: 82.62%

Figure 5.6: Results for MNIST-rotated trained at Sb and incremented with new
data from the MNIST original dataset at Si. The class labels for both these datasets
is [0, . . . 9]. The confusion matrix on the left is for the baseline network and the one
on the right is for our strategy with p = 0.

The proposed strategy can be trivially modified to work for multiple increments.

Consider there are s sites. Consider also that we have one base network N i
b , with i

indicating its state after the increment i. We learn for every increment i, a new GAN

Gi. We use the set of GANs {G0, . . . Gi−1} to create i phantom samplers, one for

each increment.

Continual learning can be implemented in the following manner. At the beginning,

we construct a base network N0
b . Once N0

b is trained with D0, we create a copy (P 0)

of N0
b for phantom labelling. The samples generated by G0 are fed through P 0, to

get phantom samples for the increment i = 0. This phantom sampler will be used

when learning the increment i = 1 .

On receiving the data increment Di, we have i GANs G0, . . . Gi−1. We can create

an updated copy of the phantom sampler P i−1, by making a copy of N i−1
b . We create a

phantom sampler, where P i−1 samples from all the GANs uniformly and hallucinates

111



p=0	Accuracy: 80.54%Baseline Accuracy: 62.56%

Figure 5.7: Results for MNIST trained at Sb and incremented with new data from
the SVHN dataset at Si. The SVHN classes are considered as novel classes in this
experiment, therefore we have twenty classes. The confusion matrix on the left is for
the baseline network and the one on the right is for our strategy with p = 0.

the labels. We update N i−1
b to N i+1

b , by training it on Di along with this new phantom

sampler P i−1.

This approach of bounded-continual learning is apt in cases where the data at each

increment is large enough to warrant training a GAN. While, this approach works

well for bounded-continual learning systems, it is not scalable to lifelong learning.

This is because unbounded-continual learning could result in an infinite number of

GANs. Seff et al, recently proposed an idea to update the same GAN for a large

number of increments Seff et al. (2017). Such a GAN could generate data from the

combined distributions of all increments it has seen. While this still works only on a

bounded number of increments, this is a step towards unbounded-continual learning.

If we employ this idea in our system, we could eliminate the need for having multiple

GANs and extend our strategy trivially to life-long learning as well. This idea is still

in its infancy and is not fully mature yet. Although we have drawn a road map, we

112



Figure 5.8: Results for the bounded-continual learning experiments. There are two
steps of increment. Each increment has its own GAN. The top row is MNIST and
the bottom row is SVHN. In each row, the image on the left is the confusion of the
base net N0 with classes [0, 1, 2, 3]. The center image is the confusion for the first
increment with training data in classes [4, 5, 6] and testing data in classes [0, . . . 6].
The confusion on the right is the final increment with training data from classes
[7, 8, 9] and testing data from the classes [0, . . . 9].

await further development of this idea to incorporate it fully into our strategy.

5.5.1 Experiments and Results

We use GANs and classifier architectures which are the same as defined for MNIST

and SVHN in the previous section, respectively. We demonstrate continual learning

on both datasets by performing two increments. The base dataset contains the classes

[0, 1, 2, 3], the first increment contains classes [4, 5, 6] and the last increment contains

113



[7, 8, 9]. Figure 5.8 shows the results for continual learning for both datasets. It

can be easily noticed that we can achieve close to state-of-the-art accuracy even

while performing continual learning. A note of prominence is that even at the end

of the third increment, there is little confusion remaining from the first increment.

This demonstrates strong support for our strategy even when extending to continual

learning.

5.6 Conclusions

In this chapter, we redefined the problem of incremental learning, in its most

rigorous form so that it can be a more realistic model for important real-world ap-

plications. Using a novel sampling technique involving generative models and the

distillation technique, we implemented a strategy to hallucinate samples with appro-

priate targets using models that were previously trained and broadcast. Without

having access to historic data, we demonstrated that we could still implement an un-

compromising incremental learning system without relaxing any of the constraints of

our definitions. We show strong and conclusive results on three benchmark datasets

in support of our strategy.

114



Chapter 6

CONCLUSIONS

In this dissertation several novel approaches to representation learning and task learn-

ing were studied. The study was divided into two parts:

1. Non-parametric multiple-instance learning and

2. Representation learning

A novel non-parametric multiple-instance learning technique was devised using mod-

ified Parzen window and k-NN ideas. These ideas were shown to our perform other

existing approaches. This solution wass applied to a diabetic retinopathy pathology

detection problem effectively. Several theoretical properties of this approach were

also studied.

In representation learning, generality of neural features were investigated first.

This investigation yielded some surprising results among the relationships of features

that were learnt.

The possibility of learning from a mentor network instead of from labels were then

investigated. One way to train a mentee network without the presence of labels is

from distillation. Distillation of dark knowledge was used to efficiently mentor a small

network from a pre-trained large mentor network, both with and without labels.

The next study involved incremental learning. Phantom-sampling from a genera-

tive model helps us in avoiding catastrophic forgetting in incremental learning setup.

In the context of network compression, batch-decorrelation and other correlation ef-

fects of neuron activities are studied. These studies help us understand representation

learning with smaller and compressed networks.

115



REFERENCES

Amores, J., “Multiple instance classification: Review, taxonomy and comparative
study”, Artificial Intelligence 201, 81–105 (2013). 23

Andrews, S., I. Tsochantaridis and T. Hofmann, “Support vector machines for
multiple-instance learning”, Advances in neural information processing systems 15,
561–568 (2002). 22, 26, 35, 36, 37, 38, 40

Antić, B. and B. Ommer, “Robust multiple-instance learning with superbags”, in
“Computer Vision–ACCV 2012”, pp. 242–255 (Springer, 2013). 22, 27, 36, 37

Ba, J. and R. Caruana, “Do deep nets really need to be deep?”, in “Advances in
neural information processing systems”, pp. 2654–2662 (2014). 74

Babenko, B., M. Yang and S. Belongie, “Robust object tracking with online multiple
instance learning”, IEEE PAMI 33, 8, 1619–1632 (2011). 21

Balan, A. K., V. Rathod, K. P. Murphy and M. Welling, “Bayesian dark knowledge”,
in “Advances in Neural Information Processing Systems”, pp. 3420–3428 (2015).
72, 75

Bastien, F., P. Lamblin, R. Pascanu, J. Bergstra, I. J. Goodfellow, A. Bergeron,
N. Bouchard and Y. Bengio, “Theano: new features and speed improvements”,
Deep Learning and Unsupervised Feature Learning NIPS 2012 Workshop (2012).
84

Belkin, M. and P. Niyogi, “Laplacian eigenmaps and spectral techniques for embed-
ding and clustering”, in “Advances in neural information processing systems”, pp.
585–591 (2002). 5

Bengio, Y., P. Simard and P. Frasconi, “Learning long-term dependencies with gradi-
ent descent is difficult”, IEEE transactions on neural networks 5, 2, 157–166 (1994).
20

Bergeron, C., G. Moore, J. Zaretzki, C. M. Breneman and K. P. Bennett, “Fast
bundle algorithm for multiple-instance learning”, Pattern Analysis and Machine
Intelligence, IEEE Transactions on 34, 6, 1068–1079 (2012). 22, 27, 36, 37

Boiman, O., E. Shechtman and M. Irani, “In defense of nearest-neighbor based image
classification”, in “Computer Vision and Pattern Recognition, 2008. CVPR 2008.
IEEE Conference on”, pp. 1–8 (IEEE, 2008). 27

Bucilu, C., R. Caruana and A. Niculescu-Mizil, “Model compression”, in “Proceedings
of the 12th ACM SIGKDD international conference on Knowledge discovery and
data mining”, pp. 535–541 (ACM, 2006). 74

Candes, E. J., J. K. Romberg and T. Tao, “Stable signal recovery from incomplete
and inaccurate measurements”, Communications on pure and applied mathematics
59, 8, 1207–1223 (2006). 5

116



Chan, W., N. R. Ke and I. Lane, “Transferring knowledge from a rnn to a dnn”,
arXiv preprint arXiv:1504.01483 (2015). 72, 75

Chandakkar, P. S., R. Venkatesan and B. Li, “Retrieving clinically relevant diabetic
retinopathy images using a multi-class multiple-instance framework”, in “SPIE
Medical Imaging”, pp. 86700Q–86700Q (International Society for Optics and Pho-
tonics, 2013a). 4, 39

Chandakkar, P. S., R. Venkatesan and B. Li, “Mirank-knn: Multiple instance re-
trieval of clinically-relevant diabetic retinopathy images”, SPIE Journal of Medical
Imaging (2017). 4, 12

Chandakkar, P. S., R. Venkatesan, B. Li and H. Li, “Retrieving clinically relevant
diabetic retinopathy images using a multi-class multiple-instance framework”, in
“SPIE Medical Imaging”, pp. 86700Q–86700Q (International Society for Optics
and Photonics, 2013b). 12

Chandakkar, P. S., R. Venkatesan, B. Li and H. K. Li, “A machine-learning approach
to retrieving diabetic retinopathy images”, in “Proceedings of the ACM Conference
on Bioinformatics, Computational Biology and Biomedicine”, pp. 588–589 (ACM,
2012). 4

Chen, Y., J. Bi and J. Z. Wang, “Miles: Multiple-instance learning via embedded
instance selection”, Pattern Analysis and Machine Intelligence, IEEE Transactions
on 28, 12, 1931–1947 (2006). 22, 26, 28, 36, 37, 38, 39, 40

Chen, Y. and J. Wang, “Image categorization by learning and reasoning with regions”,
The Journal of Machine Learning Research 5, 913–939 (2004). 21, 22, 25, 26, 33,
36, 38

Dalal, N. and B. Triggs, “Histograms of oriented gradients for human detection”, in
“Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer
Society Conference on”, vol. 1, pp. 886–893 (IEEE, 2005a). 3

Dalal, N. and B. Triggs, “Histograms of oriented gradients for human detection”, in
“Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer
Society Conference on”, vol. 1, pp. 886–893 (IEEE, 2005b). 11

Dauphin, Y. N., H. de Vries, J. Chung and Y. Bengio, “Rmsprop and equi-
librated adaptive learning rates for non-convex optimization”, arXiv preprint
arXiv:1502.04390 (2015). 60, 84

de Campos, T. E., B. R. Babu and M. Varma, “Character recognition in natural im-
ages”, in “Proceedings of the International Conference on Computer Vision Theory
and Applications, Lisbon, Portugal”, (2009). 59, 67

Dietterich, T., R. Lathrop and T. Lozano-Pérez, “Solving the multiple instance prob-
lem with axis-parallel rectangles”, Artificial Intelligence 89, 1, 31–71 (1997). 22,
24, 35

117



Escorcia, V., J. C. Niebles and B. Ghanem, “On the relationship between visual
attributes and convolutional networks”, in “Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition”, pp. 1256–1264 (2015). 49

et al., T., “Diabretdb0: Evaluation database and methodology for diabetic retinopa-
thy algorithms.”, (2005). 38

Everingham, M., L. Van Gool, C. K. Williams, J. Winn and A. Zisserman, “The pascal
visual object classes (voc) challenge”, International journal of computer vision 88,
2, 303–338 (2010). 52, 71

Fei-Fei, L., R. Fergus and P. Perona, “Learning generative visual models from few
training examples: An incremental bayesian approach tested on 101 object cat-
egories”, Computer Vision and Image Understanding 106, 1, 59–70 (2007). 59,
67

Felzenszwalb, P. F., R. B. Girshick, D. McAllester and D. Ramanan, “Object de-
tection with discriminatively trained part-based models”, Pattern Analysis and
Machine Intelligence, IEEE Transactions on 32, 9, 1627–1645 (2010). 21, 26

French, R. M., “Catastrophic interference in connectionist networks: Can it be pre-
dicted, can it be prevented?”, in “Proceedings of the 6th International Conference
on Neural Information Processing Systems”, pp. 1176–1177 (Morgan Kaufmann
Publishers Inc., 1993). 100

French, R. M., “Pseudo-recurrent connectionist networks: An approach to
the’sensitivity-stability’dilemma”, Connection Science 9, 4, 353–380 (1997). 103

Fu, Z., A. Robles-Kelly and J. Zhou, “Milis: Multiple instance learning with instance
selection”, Pattern Analysis and Machine Intelligence, IEEE Transactions on 33,
5, 958–977 (2011). 26, 36, 38

Fukushima, K. and N. Wake, “Handwritten alphanumeric character recognition by
the neocognitron”, Neural Networks, IEEE Transactions on 2, 3, 355–365 (1991).
49

Furlanello, T., J. Zhao, A. M. Saxe, L. Itti and B. S. Tjan, “Active long term memory
networks”, arXiv preprint arXiv:1606.02355 (2016). 102

Girshick, R., J. Donahue, T. Darrell and J. Malik, “Rich feature hierarchies for accu-
rate object detection and semantic segmentation”, in “Computer Vision and Pat-
tern Recognition (CVPR), 2014 IEEE Conference on”, pp. 580–587 (IEEE, 2014).
52, 71

Goldbaum, M., N. Katz, S. Chaudhuri and M. Nelson, “Image understanding for auto-
mated retinal diagnosis”, in “Proceedings of the Annual Symposium on Computer
Application in Medical Care”, p. 756 (American Medical Informatics Association,
1989). 38

Gonzalez, R. C. and R. E. Woods, “Digital image processing prentice hall”, Upper
Saddle River, NJ (2002). 8

118



Goodfellow, I., Y. Bengio and A. Courville, Deep Learning (MIT Press, 2016), http:
//www.deeplearningbook.org. 13

Goodfellow, I., J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville and Y. Bengio, “Generative adversarial nets”, in “Advances in neural
information processing systems”, pp. 2672–2680 (2014). 96, 105, 108

Goodfellow, I. J., M. Mirza, D. Xiao, A. Courville and Y. Bengio, “An empirical
investigation of catastrophic forgetting in gradient-based neural networks”, arXiv
preprint arXiv:1312.6211 (2013a). 100

Goodfellow, I. J., D. Warde-Farley, M. Mirza, A. C. Courville and Y. Bengio, “Maxout
networks.”, ICML (3) 28, 1319–1327 (2013b). 105

Green, S., S. I. Wang, D. M. Cer and C. D. Manning, “Fast and adaptive online
training of feature-rich translation models.”, in “ACL (1)”, pp. 311–321 (2013). 84

Griffin, G., A. Holub and P. Perona, “Caltech-256 object category dataset”, (2007).
81

Guillaumin, M., J. Verbeek and C. Schmid, “Multiple instance metric learning from
automatically labeled bags of faces”, Computer Vision–ECCV pp. 634–647 (2010).
27

He, K., X. Zhang, S. Ren and J. Sun, “Deep residual learning for image recognition”,
in “Proceedings of the IEEE conference on computer vision and pattern recogni-
tion”, pp. 770–778 (2016). 20

Hinton, G., O. Vinyals and J. Dean, “Dark knowledge”, Presented as the keynote in
BayLearn (2014). 72, 74

Hinton, G., O. Vinyals and J. Dean, “Distilling the knowledge in a neural network”,
arXiv preprint arXiv:1503.02531 (2015). 7, 54, 94, 98

Huang, J., S. Kumar, M. Mitra, W. Zhu and R. Zabih, “Image indexing using color
correlograms”, in “Computer Vision and Pattern Recognition, IEEE Computer
Society Conference on”, pp. 762–768 (IEEE, 1997). 38

Ioffe, S. and C. Szegedy, “Batch normalization: Accelerating deep network training
by reducing internal covariate shift”, arXiv preprint arXiv:1502.03167 (2015). 56,
60, 72, 83, 105

Jain, A. K., Fundamentals of digital image processing (Prentice-Hall, Inc., 1989). 8

Jantke, P., “Types of incremental learning”, in “AAAI Symposium on Training Issues
in Incremental Learning”, pp. 23–25 (1993). 90

Jia, Y., E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama
and T. Darrell, “Caffe: Convolutional architecture for fast feature embedding”, in
“Proceedings of the ACM International Conference on Multimedia”, pp. 675–678
(ACM, 2014). 52, 71

119

http://www.deeplearningbook.org
http://www.deeplearningbook.org


Jung, H., J. Ju, M. Jung and J. Kim, “Less-forgetting learning in deep neural net-
works”, arXiv preprint arXiv:1607.00122 (2016). 103

Kauppi, T., V. Kalesnykiene, J. Kamarainen, L. Lensu, I. Sorri, A. Raninen, R. Vouti-
lainen, H. Uusitalo, H. Kälviäinen and J. Pietilä, “Diaretdb1 diabetic retinopathy
database and evaluation protocol”, Proc. Medical Image Understanding and Anal-
ysis (MIUA) pp. 61–65 (2007). 38

Kirkpatrick, J., R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins, A. A. Rusu,
K. Milan, J. Quan, T. Ramalho, A. Grabska-Barwinska, D. Hassabis, C. Clopath,
D. Kumaran and R. Hadsell, “Overcoming catastrophic forgetting in neural net-
works”, Proceedings of the National Academy of Sciences URL http://www.pnas.
org/content/early/2017/03/13/1611835114.abstract (2017). 103

Krizhevsky, A. and G. Hinton, “Learning multiple layers of features from tiny images”,
(2009). 52, 59, 67, 81, 103

Krizhevsky, A., I. Sutskever and G. E. Hinton, “Imagenet classification with deep
convolutional neural networks”, in “Advances in neural information processing sys-
tems”, pp. 1097–1105 (2012). 19, 49

Kulkarni, N. and B. Li, “Discriminative affine sparse codes for image classification”,
in “Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference
on”, pp. 1609–1616 (IEEE, 2011). 5

Kuzborskij, I., F. Orabona and B. Caputo, “From n to n+1: Multiclass transfer
incremental learning”, in “Proceedings of the IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR)”, pp. 3358–3365 (2013). 101

Larochelle, H., D. Erhan, A. Courville, J. Bergstra and Y. Bengio, “An empirical
evaluation of deep architectures on problems with many factors of variation”, in
“Proceedings of the 24th international conference on Machine learning”, pp. 473–
480 (ACM, 2007). 58, 67, 109

LeCun, Y., B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard and
L. D. Jackel, “Backpropagation applied to handwritten zip code recognition”, Neu-
ral computation 1, 4, 541–551 (1989). 49

LeCun, Y., B. E. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. E. Hubbard
and L. D. Jackel, “Handwritten digit recognition with a back-propagation network”,
in “Advances in neural information processing systems”, pp. 396–404 (1990). 19

LeCun, Y., L. Bottou, Y. Bengio and P. Haffner, “Gradient-based learning applied to
document recognition”, Proceedings of the IEEE 86, 11, 2278–2324 (1998a). 19,
58, 67, 81

LeCun, Y., C. Cortes and C. Burges, “Mnist handwritten digit database”, (1998b).
103

Li, Y., D. M. Tax, R. P. Duin and M. Loog, “Multiple-instance learning as a classifier
combining problem”, Pattern Recognition 46, 3, 865–874 (2013). 26, 36, 37

120

http://www.pnas.org/content/early/2017/03/13/1611835114.abstract
http://www.pnas.org/content/early/2017/03/13/1611835114.abstract


Li, Z. and D. Hoiem, “Learning without forgetting”, in “Proceedings of the European
Conf. on Computer Vision (ECCV)”, pp. 614–629 (Springer, 2016). 102

Maron, O. and T. Lozano-Pérez, “A framework for multiple-instance learning”, NIPS
pp. 570–576 (1998). 22, 24, 36, 40, 45

Maron, O. and A. Ratan, “Multiple-instance learning for natural scene classification”,
in “IEEE ICML”, vol. 15, pp. 341–349 (1998). 21

McCloskey, M. and N. J. Cohen, “Catastrophic interference in connectionist networks:
The sequential learning problem”, Psychology of learning and motivation 24, 109–
165 (1989). 100

McCormick, B. and M. Goldbaum, “Stare= structured analysis of the retina: Image
processing of tv fundus image”, in “del USA-Japan Workshop on Image Processing,
Jet Propulsion Laboratory, Pasadena, CA”, (1975). 38

Mensink, T., J. Verbeek, F. Perronnin and G. Csurka, “Metric learning for large scale
image classification: Generalizing to new classes at near-zero cost”, in “Proceedings
of the European Conf. on Computer Vision (ECCV)”, pp. 488–501 (Springer, 2012).
101

Mensink, T., J. Verbeek, F. Perronnin and G. Csurka, “Distance-based image clas-
sification: Generalizing to new classes at near-zero cost”, IEEE Trans. on Pattern
Analysis and Machine Intelligence 35, 11, 2624–2637 (2013). 101

Muhlbaier, M. D., A. Topalis and R. Polikar, “Learn++. nc: Combining ensemble
of classifiers with dynamically weighted consult-and-vote for efficient incremental
learning of new classes”, IEEE Trans. on Neural Networks 20, 1, 152–168 (2009).
101

Nagesh, P. and B. Li, “A compressive sensing approach for expression-invariant face
recognition”, in “Computer Vision and Pattern Recognition, 2009. CVPR 2009.
IEEE Conference on”, pp. 1518–1525 (IEEE, 2009). 5

Nair, V. and G. E. Hinton, “Rectified linear units improve restricted boltzmann ma-
chines”, in “Proceedings of the 27th International Conference on Machine Learning
(ICML-10)”, pp. 807–814 (2010). 60, 83, 105

Nesterov, Y., “A method of solving a convex programming problem with convergence
rate o (1/k2)”, in “Soviet Mathematics Doklady”, vol. 27,2, pp. 372–376 (1983).
84

Netzer, Y., T. Wang, A. Coates, A. Bissacco, B. Wu and A. Y. Ng, “Reading digits
in natural images with unsupervised feature learning”, in “NIPS workshop on deep
learning and unsupervised feature learning”, No. 2, p. 5 (Granada, Spain, 2011).
58, 67, 103

Nguyen, A., J. Yosinski and J. Clune, “Deep neural networks are easily fooled: High
confidence predictions for unrecognizable images”, in “Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition”, pp. 427–436 (2015). 49

121



Polikar, R., L. Upda, S. S. Upda and V. Honavar, “Learn++: An incremental learning
algorithm for supervised neural networks”, IEEE Trans. on Systems, Man, and
Cybernetics, part C (Applications and Reviews) 31, 4, 497–508 (2001). 101

Polyak, B. T., “Some methods of speeding up the convergence of iteration methods”,
USSR Computational Mathematics and Mathematical Physics 4, 5, 1–17 (1964).
60, 61, 84

Quellec, G., M. Lamard, M. Abràmoff, E. Decencière, B. Lay, A. Erginay, B. Cochener
and G. Cazuguel, “A multiple-instance learning framework for diabetic retinopathy
screening”, Medical Image Analysis (2012a). 38

Quellec, G., M. Lamard, B. Cochener, C. Roux, G. Cazuguel, E. Decenciere, B. Lay
and P. Massin, “A general framework for detecting diabetic retinopathy lesions
in eye fundus images”, in “Computer-Based Medical Systems (CBMS), 2012 25th
International Symposium on”, pp. 1–6 (IEEE, 2012b). 38

Rahmani, R., S. Goldman, H. Zhang, S. Cholleti and J. Fritts, “Localized content-
based image retrieval.”, IEEE transactions on pattern analysis and machine intel-
ligence 30, 11, 1902 (2008). 22, 25, 26

Rebuffi, S.-A., A. Kolesnikov and C. H. Lampert, “iCaRL: Incremental classifier and
representation learning”, in “accepted to the IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR)”, (2017). 102

Ristin, M., M. Guillaumin, J. Gall and L. Van Gool, “Incremental learning of NCM
forests for large-scale image classification”, in “Proceedings of the IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR)”, pp. 3654–3661 (2014). 101

Robins, A., “Catastrophic forgetting, rehearsal and pseudorehearsal”, Connection
Science 7, 2, 123–146 (1995). 100, 103, 106

Romero, A., N. Ballas, S. E. Kahou, A. Chassang, C. Gatta and Y. Bengio, “Fitnets:
Hints for thin deep nets”, arXiv preprint arXiv:1412.6550 (2014). 72, 75, 76, 100

Roweis, S. T. and L. K. Saul, “Nonlinear dimensionality reduction by locally linear
embedding”, science 290, 5500, 2323–2326 (2000). 5

Rumelhart, D. E., G. E. Hinton and R. J. Williams, “Learning internal representations
by error propagation”, Tech. rep., California Univ San Diego La Jolla Inst for
Cognitive Science (1985). 13, 15

Russakovsky, O., J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpa-
thy, A. Khosla, M. Bernstein, A. C. Berg and L. Fei-Fei, “ImageNet Large Scale
Visual Recognition Challenge”, International Journal of Computer Vision (IJCV)
pp. 1–42 (2015). 52, 53, 71

Seff, A., A. Beatson, D. Suo and H. Liu, “Continual learning in generative adversarial
nets”, arXiv preprint arXiv:1705.08395 (2017). 112

122



Simonyan, K. and A. Zisserman, “Very deep convolutional networks for large-scale
image recognition”, arXiv preprint arXiv:1409.1556 (2014a). 19

Simonyan, K. and A. Zisserman, “Very deep convolutional networks for large-scale
image recognition”, CoRR abs/1409.1556, URL http://arxiv.org/abs/1409.
1556 (2014b). 51, 71, 82

Srivastava, N., G. Hinton, A. Krizhevsky, I. Sutskever and R. Salakhutdinov,
“Dropout: A simple way to prevent neural networks from overfitting”, The Journal
of Machine Learning Research 15, 1, 1929–1958 (2014). 60, 83, 105

Srivastava, R. K., K. Greff and J. Schmidhuber, “Highway networks”, arXiv preprint
arXiv:1505.00387 (2015). 20

Srivastava, R. K., J. Masci, S. Kazerounian, F. Gomez and J. Schmidhuber, “Compete
to compute”, in “Advances in neural information processing systems”, pp. 2310–
2318 (2013). 100

Szegedy, C., S. Ioffe, V. Vanhoucke and A. A. Alemi, “Inception-v4, inception-resnet
and the impact of residual connections on learning.”, in “AAAI”, pp. 4278–4284
(2017). 20

Szegedy, C., W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van-
houcke and A. Rabinovich, “Going deeper with convolutions”, arXiv preprint
arXiv:1409.4842 (2014). 49

Szegedy, C., W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van-
houcke and A. Rabinovich, “Going deeper with convolutions”, in “Proceedings of
the IEEE conference on computer vision and pattern recognition”, pp. 1–9 (2015).
20

Szegedy, C., V. Vanhoucke, S. Ioffe, J. Shlens and Z. Wojna, “Rethinking the incep-
tion architecture for computer vision”, in “Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition”, pp. 2818–2826 (2016). 20

Tenenbaum, J. B., V. De Silva and J. C. Langford, “A global geometric framework
for nonlinear dimensionality reduction”, science 290, 5500, 2319–2323 (2000). 5

Thorpe, S., D. Fize and C. Marlot, “Speed of processing in the human visual system”,
nature 381, 6582, 520 (1996). 1

Venkatesan, R., P. Chandakkar and B. Li, “Simpler non-parametric methods provide
as good or better results to multiple-instance learning”, in “The IEEE International
Conference on Computer Vision (ICCV)”, (2015). 4, 48

Venkatesan, R., P. Chandakkar, B. Li and H. K. Li, “Classification of diabetic
retinopathy images using multi-class multiple-instance learning based on color cor-
relogram features”, in “Engineering in Medicine and Biology Society (EMBC), 2012
Annual International Conference of the IEEE”, pp. 1462–1465 (IEEE, 2012a). 4,
10, 39

123

http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556


Venkatesan, R., P. Chandakkar, B. Li and H. K. Li, “Classification of diabetic
retinopathy images using multi-class multiple-instance learning based on color cor-
relogram features”, in “Engineering in Medicine and Biology Society (EMBC), 2012
Annual International Conference of the IEEE”, pp. 1462–1465 (IEEE, 2012b). 12

Venkatesan, R., V. Gattupalli and B. Li, “Neural dataset generality”, arXiv preprint
arXiv:1605.04369 (2016a). 6, 66, 109

Venkatesan, R., V. Gattupalli and B. Li, “Neural dataset generality”, CoRR
abs/1605.04369, URL http://arxiv.org/abs/1605.04369 (2016b). 66

Venkatesan, R. and B. Li, “Diving deeper into mentee networks”, arXiv preprint
arXiv:1604.08220 (2016). 7, 100

Venkatesan, R. and B. Li, Convolutional Neural Networks in Visual Computing: A
Concise Guide, Data-Enabled Engineering (Taylor & Francis Group, 2017), URL
https://books.google.com/books?id=hFUknQAACAAJ. 3

Venkatesan, R., H. Venkateshwara, S. Panchanathan and B. Li, “A strategy for an
uncompromising incremental learner”, arXiv preprint arXiv:1705.00744 (2017). 7

Wang, D., C. Liu, Z. Tang, Z. Zhang and M. Zhao, “Recurrent neural network training
with dark knowledge transfer”, arXiv preprint arXiv:1505.04630 (2015). 72, 75

Wang, H., H. Huang, F. Kamangar, F. Nie and C. Ding, “Maximum margin multi-
instance learning”, in “NIPS”, (NIPS, 2011a). 21, 27

Wang, H., F. Nie and H. Huang, “Learning instance specific distance for multi-
instance classification.”, in “AAAI”, (2011b). 22, 27, 36, 37

Wang, H., F. Nie and H. Huang, “Robust and discriminative distance for multi-
instance learning”, in “IEEE CVPR”, pp. 2919–2924 (IEEE, 2012a). 21, 27

Wang, J. and J. Zucker, “Solving the multiple-instance problem: A lazy learning ap-
proach”, in “Proceedings of the Seventeenth International Conference on Machine
Learning”, pp. 1119–1126 (Morgan Kaufmann Publishers Inc., 2000). 22, 26, 30,
36, 37, 40

Wang, Q., L. Si and D. Zhang, “A discriminative data-dependent mixture-model
approach for multiple instance learning in image classification,”, in “In Proceedings
of the 12th European Conference on Computer Vision (ECCV-12),”, (2012b). 27

Wang, Z., S. Gao and L.-T. Chia, “Learning class-to-image distance via large mar-
gin and l1-norm regularization”, in “Computer Vision ECCV 2012”, pp. 230–244
(2012c). 22, 27, 36, 37

Watamaniuk, S. N. and A. Duchon, “The human visual system averages speed infor-
mation”, Vision research 32, 5, 931–941 (1992). 1

Welling, M., “Herding dynamical weights to learn”, in “Proceedings of the ACM Intl.
Conf. on Machine Learning (ICML)”, pp. 1121–1128 (2009). 102

124

http://arxiv.org/abs/1605.04369
https://books.google.com/books?id=hFUknQAACAAJ


Wu, D., J. Bi and K. Boyer, “A min-max framework of cascaded classifier with
multiple instance learning for computer aided diagnosis”, in “IEEE CVPR”, pp.
1359–1366 (IEEE, 2009). 28

Xiao, T., J. Zhang, K. Yang, Y. Peng and Z. Zhang, “Error-driven incremental learn-
ing in deep convolutional neural network for large-scale image classification”, in
“Proceedings of the ACM Intl. Conf. on Multimedia (ACM-MM)”, pp. 177–186
(2014). 101

Xu, Y., J. Zhu, E. Chang and Z. Tu, “Multiple clustered instance learning for
histopathology cancer image segmentation, classification and clustering”, CVPR
(IEEE, 2012). 28

Yosinski, J., J. Clune, Y. Bengio and H. Lipson, “How transferable are features in
deep neural networks?”, in “Advances in Neural Information Processing Systems”,
pp. 3320–3328 (2014). 53, 57

Zhang, D., Y. Liu, L. Si, J. Zhang and R. Lawrence, “Multiple instance learning
on structred data”, in “Twenty-Fifth Annual Conference on Neural Information
Processing Systems (NIPS)”, (2011). 27

Zhang, Q. and S. Goldman, “Em-dd: An improved multiple-instance learning tech-
nique”, Advances in neural information processing systems 14, 1073–1080 (2001).
22, 25, 26, 36, 40

Zhang, Q., S. Goldman, W. Yu and J. Fritts, “Content-based image retrieval using
multiple-instance learning”, in “Machine Learning-International Worskshop-Then
Conference-”, pp. 682–689 (2002). 21

Zhang, Q. and B. Li, “Discriminative k-svd for dictionary learning in face recogni-
tion”, in “Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Confer-
ence on”, pp. 2691–2698 (IEEE, 2010). 5

125



APPENDIX A

PERMISSION STATEMENTS FROM CO-AUTHORS

126



Permission for including co-authored material in this dissertation was obtained
from co-authors, Prof. Baoxin Li, Parag Chandakkar and Vijetha Gatupalli.

127


	LIST OF TABLES
	LIST OF FIGURES
	1 
	1.0.1 Image Representations
	1.0.2 Multiple Instance Learning
	1.0.3 Representation Learning

	1.1 Background on Hand-Crafted Features.
	1.2 Deep Image Features
	1.2.1 Convolutional Neural Networks
	1.2.2 CNN Architecture Design


	2 
	2.1 Introduction
	2.2 Related Works
	2.3 The Non-parametric MIL Approach
	2.3.1 Learning Under This Formulation

	2.4 Experiments and Results
	2.4.1 Musk Dataset
	2.4.2 Andrew's Datasets
	2.4.3 Corel Dataset
	2.4.4 A DR Dataset
	2.4.5 Sensitivity to Labeling Error

	2.5 A Simple Case Study Describing the Effectiveness of the Proposed Method
	2.6 Analogical Difference Between DD and the Proposed Formulation.
	2.7 Computational Complexity
	2.8  Sensitivity to k
	2.9 Conclusion

	3 
	3.1 Introduction
	3.2 Related Work
	3.3 Design of Experiments
	3.3.1 Dataset Generality
	3.3.2 Class Generality
	3.3.3 Datasets Used
	3.3.4 Network Architecture and Learning

	3.4 Results and observations
	3.4.1 Character Datasets
	3.4.2 CIFAR 10 vs. Caltech 101
	3.4.3 Caltech 101 vs. Colonoscopy
	3.4.4 Summary of Results

	3.5 Conclusions

	4 
	4.1 Introduction
	4.2 Related Works
	4.3 Generalized Mentored Learning
	4.4 Design of Experiments
	4.4.1 Effectiveness
	4.4.2 Generality of the Learnt Representations
	4.4.3 Learning the VGG-19 Representation
	4.4.4 Implementation Details

	4.5 Results
	4.6 Conclusions

	5 
	5.1 Introduction
	5.2 Proposed Method
	5.3 Related Work
	5.4 Experiments and Results
	5.4.1 Single Dataset Experiments
	5.4.2 Cross-Domain Increments

	5.5 Extension to Bounded-Continual Learning
	5.5.1 Experiments and Results

	5.6 Conclusions

	6 

	REFERENCES
	A 



